結果
問題 | No.2983 Christmas Color Grid (Advent Calender ver.) |
ユーザー |
👑 |
提出日時 | 2024-12-08 17:27:50 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,313 ms / 3,340 ms |
コード長 | 5,732 bytes |
コンパイル時間 | 1,356 ms |
コンパイル使用メモリ | 118,544 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-08 17:28:06 |
合計ジャッジ時間 | 14,569 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 64 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <limits>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i>= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }#define COLOR(s) ("\x1b[" s "m")////////////////////////////////////////////////////////////////////////////////// Barrettstruct ModInt {static unsigned M;static unsigned long long NEG_INV_M;static void setM(unsigned m) { M = m; NEG_INV_M = -1ULL / M; }unsigned x;ModInt() : x(0U) {}ModInt(unsigned x_) : x(x_ % M) {}ModInt(unsigned long long x_) : x(x_ % M) {}ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) {const unsigned long long y = static_cast<unsigned long long>(x) * a.x;const unsigned long long q = static_cast<unsigned long long>((static_cast<unsigned __int128>(NEG_INV_M) * y) >> 64);const unsigned long long r = y - M * q;x = r - M * (r >= M);return *this;}ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};unsigned ModInt::M;unsigned long long ModInt::NEG_INV_M;// !!!Use ModInt::setM!!!////////////////////////////////////////////////////////////////////////////////using Mint = ModInt;vector<Mint> pw;vector<int> uf;vector<pair<int, int>> his;Mint now;void init(int n) {uf.assign(n, -1);his.clear();now = n * pw[1];}void update(int u, int p) {his.emplace_back(u, uf[u]);uf[u] = p;}int snapshot() {return his.size();}void rollback(int stamp) {for (; (int)his.size() > stamp; his.pop_back()) uf[his.back().first] = his.back().second;}int root(int u) {for (; ; u = uf[u]) {if (uf[u] < 0) {return u;}}}bool connect(int u, int v) {u = root(u);v = root(v);if (u == v) return false;if (uf[u] > uf[v]) swap(u, v);now -= pw[-uf[u]];now -= pw[-uf[v]];now += pw[-(uf[u] + uf[v])];update(u, uf[u] + uf[v]);update(v, u);return true;}int M, N, MO;Int K;int id(int x, int y) {return x * N + y;}Mint ans;bool a[30][30];void dfs(int x, int y, int ign) {if (y == N) {++x;y = 0;}if (x == M) {ans += (now - ign * pw[1]);return;}dfs(x, y + 1, ign + 1);a[x][y] = true;const auto stamp = snapshot();const Mint save = now;if (x && a[x - 1][y]) connect(id(x - 1, y), id(x, y));if (y && a[x][y - 1]) connect(id(x, y - 1), id(x, y));dfs(x, y + 1, ign);a[x][y] = false;rollback(stamp);now = save;}int main() {for (; ~scanf("%d%d%lld%d", &M, &N, &K, &MO); ) {Mint::setM(MO);pw.resize(M*N + 1);for (int i = 0; i <= M*N; ++i) pw[i] = Mint(i).pow(K);init(M*N);ans = 0;memset(a, 0, sizeof(a));dfs(0, 0, 0);ans /= Mint(2).pow(M*N);Mint har = 0;for (int i = 1; i <= M*N; ++i) har += Mint(i).inv();ans *= har;printf("%u\n", ans.x);}return 0;}