結果

問題 No.2981 Pack Tree into Grid
ユーザー wsrtrt
提出日時 2024-12-09 22:45:58
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 291 ms / 2,000 ms
コード長 16,182 bytes
コンパイル時間 5,867 ms
コンパイル使用メモリ 309,048 KB
実行使用メモリ 10,856 KB
最終ジャッジ日時 2024-12-09 22:46:07
合計ジャッジ時間 8,385 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define INT(...)
     \
int __VA_ARGS__;
         \
IN(__VA_ARGS__)
#define LL(...)
     \
ll __VA_ARGS__;
         \
IN(__VA_ARGS__)
#define STR(...)
     \
string __VA_ARGS__;
         \
IN(__VA_ARGS__)
#define CHR(...)
     \
char __VA_ARGS__;
         \
IN(__VA_ARGS__)
#define DBL(...)
     \
double __VA_ARGS__;
         \
IN(__VA_ARGS__)
#define ll long long
#define yes cout<<"Yes"<<"\n"
#define no cout<<"No"<<"\n"
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
#define allr(x) (x).rbegin(),(x).rend()
#define SUM(v) accumulate(all(v), 0LL)
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define pii pair<int, int>
#define pll pair<long long,long long>
#define pb push_back
#define eb emplace_back
#define ff first
#define ss second
#define vi vector<int>
#define vll vector<long long>
#define vc vector<char>
#define vvi vector<vector<int>>
#define vec(type, name, ...) vector<type> name(__VA_ARGS__)
#define VEC(type, name, size)
     \
vector<type> name(size);
         \
IN(name)
int scan() { return getchar(); }
void scan(int &a) { cin >> a; }
void scan(long long &a) { cin >> a; }
void scan(char &a) { cin >> a; }
void scan(double &a) { cin >> a; }
void scan(string &a) { cin >> a; }
template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); }
template <class T> void scan(vector<T> &);
template <class T> void scan(vector<T> &a) {
for(auto &i : a) scan(i);
}
template <class T> void scan(T &a) { cin >> a; }
void IN() {}
template <class Head, class... Tail> void IN(Head &head, Tail &...tail) {
scan(head);
IN(tail...);
}
template <class T> void print(const T &a) { cout << a; }
void OUT() { cout << endl; }
template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) {
print(head);
if(sizeof...(tail)) cout << ' ';
OUT(tail...);
}
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define VV(type, name, h, w)
     \
vector<vector<type>> name(h, vector<type>(w));
         \
IN(name)
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)
     \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>;
template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff - y.ff, x.ss - y.ss); }
template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff + y.ff, x.ss + y.ss); }
template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.ff, r.ff), min(l.ss, r.ss)); }
template <class T> vector<T> &operator--(vector<T> &v) {
fore(e, v) e--;
return v;
}
template <class T> vector<T> operator--(vector<T> &v, int) {
auto res = v;
fore(e, v) e--;
return res;
}
template <class T> vector<T> &operator++(vector<T> &v) {
fore(e, v) e++;
return v;
}
template <class T> vector<T> operator++(vector<T> &v, int) {
auto res = v;
fore(e, v) e++;
return res;
}
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end())
//
template <typename T> void zip(vector<T> &x) {
vector<T> y = x;
UNIQUE(y);
for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); }
}
template <class T> T ceil(T x, T y) {
assert(y >= 1);
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <class T> T floor(T x, T y) {
assert(y >= 1);
return (x > 0 ? x / y : (x + y - 1) / y);
}
long long POW(long long x, int n) {
long long res = 1LL;
for(; n; n >>= 1, x *= x)
if(n & 1) res *= x;
return res;
}
//0^n=0
long long modpow(long long a, long long n, long long mod) {
a%=mod;
assert(a!=0||n!=0);
if(a==0)return 0;
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
//return 0<=a&&a<h&&0<=b&&b<w;
inline bool ingrid(ll a,ll b,ll h,ll w){return 0<=a&&a<h&&0<=b&&b<w;}
//return 0<=a&&a<n;
inline bool inl(int a,int n){return 0<=a&&a<n;}
// bit
ll pow2(int i) { return 1LL << i; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); }
// int allbit(int n) { return (1 << n) - 1; }
ll allbit(ll n) { return (1LL << n) - 1; }
int popcount(signed t) { return __builtin_popcount(t); }
int popcount(ll t) { return __builtin_popcountll(t); }
bool ispow2(int i) { return i && (i & -i) == i; }
int in() {
int x;
cin >> x;
return x;
}
ll lin() {
unsigned long long x;
cin >> x;
return x;
}
long long sqrtll(long long x) {
assert(x >= 0);
long long rev = sqrt(x);
while(rev * rev > x) --rev;
while((rev+1) * (rev+1)<=x) ++rev;
return rev;
}
int logN(long long n){
int ret=1;
while((1LL<<ret)<n)ret++;
return ret;
}
const double PI=3.1415926535897932384626433832795028841971;
const ll MOD998 = 998244353;
const int INFI = numeric_limits<int>::max() / 2; const long long INFL = numeric_limits<long long>::max() / 2;
#define inf INFINITY
template<class T>
void debug(vector<T> a){
rep(i,0,(int)a.size()){
cout<<a[i]<<' ';
}
cout<<endl;
return;
}
bool palindrome(const string& s){
return equal(all(s),s.rbegin());
}
template <std::uint_fast64_t Modulus> class modint {
using u64 = std::uint_fast64_t;
public:
u64 a;
constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
constexpr u64 &val() noexcept { return a; }
constexpr const u64 &val() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept {
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept {
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept {
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept {
return modint(*this) /= rhs;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if (a >= Modulus) {
a -= Modulus;
}
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if (a < rhs.a) {
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
friend bool operator==(const modint& a,const modint& b) { return a.val()==b.val(); }
friend bool operator!=(const modint& a,const modint& b) { return a.val()!=b.val(); }
};
using mint9=modint<998244353>;
using mint1=modint<1000000007>;
//cost
struct Edge{
int from,to;
ll cost;
Edge()=default;
Edge(int from,int to,ll cost=1):from(from),to(to),cost(cost){}
operator int() const {return to;}
};
constexpr pii dx4[4] = {pii{-1, 0},pii{0, -1}, pii{0, 1}, pii{1, 0} };
constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}};
constexpr pii dx[100]={{1,0},{0,1},{1,1},{0,0}};
#define el "\n"
#define endl "\n"
#define fastio std::cin.sync_with_stdio(false);std::cin.tie(nullptr);
template<class G>
struct AHUAlgorithm{
map<vector<int>,int> name;
map<int,vector<int>> rev;
AHUAlgorithm(){}
vector<int> dfs(G& g,int root){
vector<int> dist(g.size(),-1);
stack<int> st;
dist[root]=0;
for(int pos=root;; pos=st.top(),st.pop()){
for(auto& i:g[pos]){
if(dist[(int)i]!=-1)continue;
dist[(int)i]=dist[pos]+1;
st.push(i);
}
if(st.empty())break;
}
return dist;
}
bool dfs2(G& g,int pos,int pre,pair<int,int>& c,int v2,int diam,int d){
if(pos==v2){
if(d==diam/2)c.first=pos;
else if(d==(diam+1)/2)c.second=pos;
return true;
}
for(int &i:g[pos]){
if((int)i==pre)continue;
if(dfs2(g,(int)i,pos,c,v2,diam,d+1)){
if(d==diam/2)c.first=pos;
else if(d==(diam+1)/2)c.second=pos;
return true;
}
}
return false;
}
pair<int,int> find_center(G& g){
vector<int> d0=dfs(g,0);
int v=distance(d0.begin(),max_element(d0.begin(),d0.end()));
vector<int> dv=dfs(g,v);
int diam=*max_element(dv.begin(),dv.end());
pair<int,int> res{-1,-1};
int v2=distance(dv.begin(),max_element(dv.begin(),dv.end()));
dfs2(g,v,-1,res,v2,diam,0);
return res;
}
int set_name(vector<int>& v){
if(name.find(v)!=name.end())return name[v];
int n=name.size();name[v]=n;rev[n]=v;
return n;
}
int get_name(G& g,int pos,vector<int>& v,int pre=-1){
vector<int> kt;
for(auto& i:g[pos]){
if((int)i==pre)continue;
kt.push_back(get_name(g,(int)i,v,pos));
}
sort(kt.begin(),kt.end());
return v[pos]=set_name(kt);
}
bool Rooted_Tree_Isomorphism(G& g,int r1,G& h,int r2){
vector<int> v1(g.size()),v2(h.size());
return get_name(g,r1,v1)==get_name(h,r2,v2);
}
//g,h (true, false)
bool Tree_Isomorphism( G& g, G& h ){
pair<int,int> c1=find_center(g),c2=find_center(h);
if(c1.second!=-1 && c2.second!=-1){//
return Rooted_Tree_Isomorphism(g,c1.first,h,c2.first) | Rooted_Tree_Isomorphism(g,c1.second,h,c2.first);
}else if(c1.second==-1 && c2.second==-1){//
return Rooted_Tree_Isomorphism(g,c1.first,h,c2.first);
}else return false;
}
};
/*
O(nlogn)
:https://logic.pdmi.ras.ru/~smal/files/smal_jass08.pdf
*/
void solve(){
INT(n);
vector<vector<int>> g(n);
{
rep(i,0,n-1){
INT(x,y,w);x--;y--;
// x y w-1
int pre=x;
rep(i,0,w-1){
g[pre].pb(g.size());
g.pb({pre});
pre=(int)g.size()-1;
}
g[pre].pb(y);
g[y].pb(pre);
}
}
int sz=(int)g.size();
INT(h,w);
VEC(string,s,h);
vv(int,a,h,w,-1);
{
//No
int m=0;
rep(i,0,h)rep(j,0,w){
if(s[i][j]=='.')continue;
a[i][j]=m++;
}
if(m!=sz){
no;
return;
}
}
vector<vector<int>> t(sz);
rep(i,0,h){
rep(j,0,w){
rep(k,0,4){
int x,y;tie(x,y)=pii(i,j)+dx4[k];
if(!ingrid(x,y,h,w))continue;
if(s[x][y]=='.')continue;
if(s[i][j]=='.')continue;
t[a[i][j]].pb(a[x][y]);
}
}
}
AHUAlgorithm<vector<vector<int>>> ahu;
int r1,r2;
{
pii c1,c2;
c1=ahu.find_center(g),c2=ahu.find_center(t);
if(ahu.Rooted_Tree_Isomorphism(g,c1.first,t,c2.first)){
tie(r1,r2)=tie(c1.first,c2.first);
}
else if(c1.second!=-1 && c2.second!=-1 && ahu.Rooted_Tree_Isomorphism(g,c1.second,t,c2.first)){
tie(r1,r2)=tie(c1.ss,c2.ff);
}else{
no;
return ;
}
}
vector<int> v1(sz),v2(sz);
ahu.get_name(g,r1,v1);
ahu.get_name(t,r2,v2);
vector<int> mp(sz);//
{
auto dfs=[&](auto&& self,int pos1,int pre1,int pos2,int pre2)->void {
vector<pii> kt1,kt2;
fore(i,g[pos1]){
if(i==pre1)continue;
kt1.pb({v1[i],i});
}
fore(i,t[pos2]){
if(i==pre2)continue;
kt2.pb({v2[i],i});
}
sort(all(kt1));sort(all(kt2));
rep(i,0,(int)kt1.size()){
mp[kt2[i].ss]=kt1[i].ss;
}
fore(i,t[pos2]){
if(i==pre2)continue;
self(self,mp[i],pos1,i,pos2);
}
};
mp[r2]=r1;
dfs(dfs,r1,-1,r2,-1);
}
vector<pii> ans(n);
rep(i,0,h){
rep(j,0,w){
if(s[i][j]=='.')continue;
if(mp[a[i][j]]<n){
ans[mp[a[i][j]]]=pii{i+1,j+1};
}
}
}
yes;
fore(i,ans){
OUT(i.ff,i.ss);
}
}
int main(){
fastio
INT(q);
while(q--)solve();
return 0;
}
/*
Yes/no
ww-1
... 
1
1
10 18
..................
..................
..................
..................
..................
..................
..................
..................
..................
..........#.......
*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0