結果

問題 No.2985 May Count Induced C4 Subgraphs
ユーザー NyaanNyaan
提出日時 2024-12-10 15:13:24
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4,978 ms / 5,000 ms
コード長 36,642 bytes
コンパイル時間 4,990 ms
コンパイル使用メモリ 321,920 KB
最終ジャッジ日時 2025-02-26 11:49:05
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

/**
* date : 2024-12-10 15:13:18
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tr2/dynamic_bitset>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
constexpr P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// T
// i : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod
// T :
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T :
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
if(v.empty()) return {};
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#endif
#ifndef NyaanDebug
#define trc(...) (void(0))
#endif
#ifndef NyaanLocal
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
template <typename T>
struct edge {
int src, to;
T cost;
edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;
// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
UnweightedGraph g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
if (is_1origin) x--, y--;
g[x].push_back(y);
if (!is_directed) g[y].push_back(x);
}
return g;
}
// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
WeightedGraph<T> g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
cin >> c;
if (is_1origin) x--, y--;
g[x].emplace_back(x, y, c);
if (!is_directed) g[y].emplace_back(y, x, c);
}
return g;
}
// Input of Edges
template <typename T>
Edges<T> esgraph([[maybe_unused]] int N, int M, int is_weighted = true,
bool is_1origin = true) {
Edges<T> es;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
es.emplace_back(x, y, c);
}
return es;
}
// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
bool is_directed = false, bool is_1origin = true) {
vector<vector<T>> d(N, vector<T>(N, INF));
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
d[x][y] = c;
if (!is_directed) d[y][x] = c;
}
return d;
}
/**
* @brief
* @docs docs/graph/graph-template.md
*/
//
template <uint32_t mod>
struct LazyMontgomeryModInt {
using mint = LazyMontgomeryModInt;
using i32 = int32_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
static_assert(r * mod == 1, "this code has bugs.");
u32 a;
constexpr LazyMontgomeryModInt() : a(0) {}
constexpr LazyMontgomeryModInt(const int64_t &b)
: a(reduce(u64(b % mod + mod) * n2)){};
static constexpr u32 reduce(const u64 &b) {
return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
}
constexpr mint &operator+=(const mint &b) {
if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator-=(const mint &b) {
if (i32(a -= b.a) < 0) a += 2 * mod;
return *this;
}
constexpr mint &operator*=(const mint &b) {
a = reduce(u64(a) * b.a);
return *this;
}
constexpr mint &operator/=(const mint &b) {
*this *= b.inverse();
return *this;
}
constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
constexpr bool operator==(const mint &b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
constexpr bool operator!=(const mint &b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
constexpr mint operator-() const { return mint() - mint(*this); }
constexpr mint operator+() const { return mint(*this); }
constexpr mint pow(u64 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
constexpr mint inverse() const {
int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;
while (y > 0) {
t = x / y;
x -= t * y, u -= t * v;
tmp = x, x = y, y = tmp;
tmp = u, u = v, v = tmp;
}
return mint{u};
}
friend ostream &operator<<(ostream &os, const mint &b) {
return os << b.get();
}
friend istream &operator>>(istream &is, mint &b) {
int64_t t;
is >> t;
b = LazyMontgomeryModInt<mod>(t);
return (is);
}
constexpr u32 get() const {
u32 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static constexpr u32 get_mod() { return mod; }
};
using namespace std;
// MAX C(n, r) fac(n) n
//
// mod 0
template <typename T>
struct Binomial {
vector<T> f, g, h;
Binomial(int MAX = 0) {
assert(T::get_mod() != 0 && "Binomial<mint>()");
f.resize(1, T{1});
g.resize(1, T{1});
h.resize(1, T{1});
if (MAX > 0) extend(MAX + 1);
}
void extend(int m = -1) {
int n = f.size();
if (m == -1) m = n * 2;
m = min<int>(m, T::get_mod());
if (n >= m) return;
f.resize(m);
g.resize(m);
h.resize(m);
for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
g[m - 1] = f[m - 1].inverse();
h[m - 1] = g[m - 1] * f[m - 2];
for (int i = m - 2; i >= n; i--) {
g[i] = g[i + 1] * T(i + 1);
h[i] = g[i] * f[i - 1];
}
}
T fac(int i) {
if (i < 0) return T(0);
while (i >= (int)f.size()) extend();
return f[i];
}
T finv(int i) {
if (i < 0) return T(0);
while (i >= (int)g.size()) extend();
return g[i];
}
T inv(int i) {
if (i < 0) return -inv(-i);
while (i >= (int)h.size()) extend();
return h[i];
}
T C(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r) * finv(r);
}
inline T operator()(int n, int r) { return C(n, r); }
template <typename I>
T multinomial(const vector<I>& r) {
static_assert(is_integral<I>::value == true);
int n = 0;
for (auto& x : r) {
if (x < 0) return T(0);
n += x;
}
T res = fac(n);
for (auto& x : r) res *= finv(x);
return res;
}
template <typename I>
T operator()(const vector<I>& r) {
return multinomial(r);
}
T C_naive(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
T ret = T(1);
r = min(r, n - r);
for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
return ret;
}
T P(int n, int r) {
if (n < 0 || n < r || r < 0) return T(0);
return fac(n) * finv(n - r);
}
// [x^r] 1 / (1-x)^n
T H(long long n, long long r) {
if (n < 0 || r < 0) return T(0);
return r == 0 ? 1 : C(n + r - 1, r);
}
};
//
using namespace std;
using namespace std;
using namespace std;
namespace internal {
unsigned long long non_deterministic_seed() {
unsigned long long m =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= 9845834732710364265uLL;
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }
// 64 bit seed ( seed )
//
// #define RANDOMIZED_SEED
unsigned long long seed() {
#if defined(DETERMINISTIC_SEED)
return deterministic_seed();
#elif defined(NyaanLocal) && !defined(RANDOMIZED_SEED)
return deterministic_seed();
#else
return non_deterministic_seed();
#endif
}
} // namespace internal
using namespace std;
namespace internal {
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
#define ENABLE_HAS_TYPE(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<typename T::var>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
#define ENABLE_HAS_VAR(var) \
template <class, class = void> \
struct has_##var : false_type {}; \
template <class T> \
struct has_##var<T, void_t<decltype(T::var)>> : true_type {}; \
template <class T> \
constexpr auto has_##var##_v = has_##var<T>::value;
} // namespace internal
namespace internal {
// , 64 bit unsigned int
using u64 = unsigned long long;
using u128 = __uint128_t;
ENABLE_HAS_TYPE(first_type);
ENABLE_HAS_TYPE(second_type);
ENABLE_HAS_TYPE(iterator);
template <typename T>
u64 hash_function(const T& x) {
static u64 r = seed();
constexpr u64 z1 = 11995408973635179863ULL;
if constexpr (is_broadly_integral_v<T>) {
// Integral
return (u64(x) ^ r) * z1;
} else if constexpr (has_first_type_v<T> && has_second_type_v<T>) {
// pair
constexpr u64 z2 = 10150724397891781847ULL;
return hash_function(x.first) + hash_function(x.second) * z2;
} else if constexpr (has_iterator_v<T>) {
// Container
constexpr u64 mod = (1LL << 61) - 1;
constexpr u64 base = 950699498548472943ULL;
u64 m = 0;
for (auto& z : x) {
u64 w;
if constexpr (is_broadly_integral_v<T>) {
w = u64(z) ^ r;
} else {
w = hash_function(z);
}
u128 y = u128(m) * base + (w & mod);
m = (y & mod) + (y >> 61);
if (m >= mod) m -= mod;
}
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
} else {
static_assert([]() { return false; }());
}
}
template <typename Key>
struct HashObject {
size_t operator()(const Key& x) const { return hash_function(x); }
};
} // namespace internal
/*
@brief
*/
// hashmap
//
//
// fixed_size : true
// get_hash :
//
// _default_value : val ,
// _default_size :
// , max(4, _default_size) 2
// fixed_size true
template <typename Key, typename Val, bool fixed_size = false,
unsigned long long (*get_hash)(const Key&) =
internal::hash_function<Key>>
struct UnerasableHashMap {
int N, occupied_num, shift;
vector<Key> keys;
vector<Val> vals;
vector<char> flag;
Val default_value;
int default_size;
// n
void init(int n, bool reset = false) {
assert(n >= 4 && (n & (n - 1)) == 0);
if constexpr (fixed_size) {
assert(reset == true);
n = N;
}
if (reset == true) {
N = n, occupied_num = 0, shift = 64 - __builtin_ctz(n);
keys.resize(n);
vals.resize(n);
flag.resize(n);
fill(begin(vals), end(vals), default_value);
fill(begin(flag), end(flag), 0);
} else {
N = n, shift = 64 - __builtin_ctz(n);
vector<Key> keys2(n);
vector<Val> vals2(n, default_value);
vector<char> flag2(n);
swap(keys, keys2), swap(vals, vals2), swap(flag, flag2);
for (int i = 0; i < (int)flag2.size(); i++) {
if (flag2[i]) {
int j = hint(keys2[i]);
keys[j] = keys2[i], vals[j] = vals2[i], flag[j] = 1;
}
}
}
}
UnerasableHashMap(const Val& _default_value = Val{}, int _default_size = 4)
: occupied_num(0), default_value(_default_value) {
if (fixed_size == false) _default_size = 4;
N = 4;
while (N < _default_size) N *= 2;
default_size = N;
init(N, true);
}
int hint(const Key& k) {
int hash = get_hash(k) >> shift;
while (flag[hash] && keys[hash] != k) hash = (hash + 1) & (N - 1);
return hash;
}
// key i
Val& operator[](const Key& k) {
int i = hint(k);
if (!flag[i]) {
if constexpr (fixed_size == false) {
if (occupied_num * 2 >= N) {
init(2 * N), i = hint(k);
}
}
keys[i] = k, flag[i] = 1, occupied_num++;
}
return vals[i];
}
Val get(const Key& k) {
int i = hint(k);
return flag[i] ? vals[i] : default_value;
}
// , f f(key, val)
template <typename F>
void enumerate(const F f) {
for (int i = 0; i < (int)flag.size(); i++) {
if (flag[i]) f(keys[i], vals[i]);
}
}
int count(const Key& k) { return flag[hint(k)]; }
bool contain(const Key& k) { return flag[hint(k)]; }
int size() const { return occupied_num; }
void reset() { init(default_size, true); }
void clear() { init(default_size, true); }
};
namespace nachia {
template <class Elem>
class CsrArray {
public:
struct ListRange {
using iterator = typename std::vector<Elem>::iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
Elem& operator[](int i) const { return begi[i]; }
};
struct ConstListRange {
using iterator = typename std::vector<Elem>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Elem& operator[](int i) const { return begi[i]; }
};
private:
int m_n;
std::vector<Elem> m_list;
std::vector<int> m_pos;
public:
CsrArray() : m_n(0), m_list(), m_pos() {}
static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items) {
CsrArray res;
res.m_n = n;
std::vector<int> buf(n + 1, 0);
for (auto& [u, v] : items) {
++buf[u];
}
for (int i = 1; i <= n; i++) buf[i] += buf[i - 1];
res.m_list.resize(buf[n]);
for (int i = (int)items.size() - 1; i >= 0; i--) {
res.m_list[--buf[items[i].first]] = std::move(items[i].second);
}
res.m_pos = std::move(buf);
return res;
}
static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos) {
CsrArray res;
res.m_n = pos.size() - 1;
res.m_list = std::move(list);
res.m_pos = std::move(pos);
return res;
}
ListRange operator[](int u) {
return ListRange{m_list.begin() + m_pos[u], m_list.begin() + m_pos[u + 1]};
}
ConstListRange operator[](int u) const {
return ConstListRange{m_list.begin() + m_pos[u],
m_list.begin() + m_pos[u + 1]};
}
int size() const { return m_n; }
int fullSize() const { return (int)m_list.size(); }
};
} // namespace nachia
namespace nachia {
struct Graph {
public:
struct Edge {
int from, to;
void reverse() { std::swap(from, to); }
int xorval() const { return from ^ to; }
};
Graph(int n = 0, bool undirected = false, int m = 0)
: m_n(n), m_e(m), m_isUndir(undirected) {}
Graph(int n, const std::vector<std::pair<int, int>>& edges,
bool undirected = false)
: m_n(n), m_isUndir(undirected) {
m_e.resize(edges.size());
for (std::size_t i = 0; i < edges.size(); i++)
m_e[i] = {edges[i].first, edges[i].second};
}
template <class Cin>
static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0) {
Graph res(n, undirected, m);
for (int i = 0; i < m; i++) {
int u, v;
cin >> u >> v;
res[i].from = u - offset;
res[i].to = v - offset;
}
return res;
}
int numVertices() const noexcept { return m_n; }
int numEdges() const noexcept { return int(m_e.size()); }
int addNode() noexcept { return m_n++; }
int addEdge(int from, int to) {
m_e.push_back({from, to});
return numEdges() - 1;
}
Edge& operator[](int ei) noexcept { return m_e[ei]; }
const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
Edge& at(int ei) { return m_e.at(ei); }
const Edge& at(int ei) const { return m_e.at(ei); }
auto begin() { return m_e.begin(); }
auto end() { return m_e.end(); }
auto begin() const { return m_e.begin(); }
auto end() const { return m_e.end(); }
bool isUndirected() const noexcept { return m_isUndir; }
void reverseEdges() noexcept {
for (auto& e : m_e) e.reverse();
}
void contract(int newV, const std::vector<int>& mapping) {
assert(numVertices() == int(mapping.size()));
for (int i = 0; i < numVertices(); i++)
assert(0 <= mapping[i] && mapping[i] < newV);
for (auto& e : m_e) {
e.from = mapping[e.from];
e.to = mapping[e.to];
}
m_n = newV;
}
std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
int n = numVertices();
assert(n == int(mapping.size()));
for (int i = 0; i < n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
std::vector<int> indexV(n), newV(num);
for (int i = 0; i < n; i++)
if (mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
std::vector<Graph> res;
res.reserve(num);
for (int i = 0; i < num; i++) res.emplace_back(newV[i], isUndirected());
for (auto e : m_e)
if (mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0)
res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
return res;
}
CsrArray<int> getEdgeIndexArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for (int i = 0; i < numEdges(); i++) {
auto e = operator[](i);
src.emplace_back(e.from, i);
if (undirected) src.emplace_back(e.to, i);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getEdgeIndexArray() const {
return getEdgeIndexArray(isUndirected());
}
CsrArray<int> getAdjacencyArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for (auto e : m_e) {
src.emplace_back(e.from, e.to);
if (undirected) src.emplace_back(e.to, e.from);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getAdjacencyArray() const {
return getAdjacencyArray(isUndirected());
}
private:
int m_n;
std::vector<Edge> m_e;
bool m_isUndir;
};
} // namespace nachia
namespace nachia {
// simple graph
// for each edge
// O( n + m sqrt(m) ) time
template <class Weight>
std::vector<long long> CountC4Simple(int n, std::vector<int> U,
std::vector<int> V,
std::vector<Weight> W) {
int m = int(W.size());
// less incident edges, smaller index
std::vector<int> deg(n);
for (int e = 0; e < m; e++) {
deg[U[e]]++;
deg[V[e]]++;
}
std::vector<int> I(n);
for (int i = 0; i < n; i++) I[i] = i;
std::sort(I.begin(), I.end(), [&](int l, int r) { return deg[l] < deg[r]; });
{
std::vector<int> O(n);
for (int i = 0; i < n; i++) O[I[i]] = i;
for (int& u : U) u = O[u];
for (int& u : V) u = O[u];
}
for (int e = 0; e < m; e++)
if (U[e] < V[e]) std::swap(U[e], V[e]);
// adjacency list
std::vector<int> estart(n);
for (int i = 0; i < n - 1; i++) estart[i + 1] = estart[i] + deg[I[i]];
std::vector<int> eend = estart;
std::vector<int> eid(m * 2);
std::vector<int> eto(m * 2);
for (int e = 0; e < m; e++) {
int v = U[e];
int w = V[e];
eid[eend[v]] = e;
eto[eend[v]] = w;
eend[v]++;
}
std::vector<int> eendx = eend;
for (int v = 0; v < n; v++) {
for (int i = estart[v]; i < eendx[v]; i++) {
int e = eid[i];
int w = eto[i];
eid[eend[w]] = e;
eto[eend[w]] = v;
eend[w]++;
}
}
std::vector<Weight> c(n); // c[x] : number of paths(v --> w --> x)
std::vector<Weight> ans(m);
for (int v = n - 1; v >= 0; v--) {
for (int i = estart[v]; i < eend[v]; i++) {
int evw = eid[i];
int w = eto[i];
eend[w] -= 1; // remove w -> v
for (int j = estart[w]; j < eend[w]; j++) {
int ewx = eid[j];
int x = eto[j];
c[x] += W[evw] * W[ewx];
}
}
for (int i = estart[v]; i < eend[v]; i++) {
int evw = eid[i];
int w = eto[i];
for (int j = estart[w]; j < eend[w]; j++) {
int ewx = eid[j];
int x = eto[j];
Weight val = c[x] - W[evw] * W[ewx];
ans[evw] += val * W[ewx];
ans[ewx] += val * W[evw];
}
}
for (int i = estart[v]; i < eend[v]; i++) {
int w = eto[i];
for (int j = estart[w]; j < eend[w]; j++) c[eto[j]] = 0;
}
}
return ans;
}
// for each edge
// O( n + m sqrt(m) ) time
template <class Weight>
std::vector<Weight> CountC4(int n, std::vector<int> U, std::vector<int> V,
std::vector<Weight> W) {
int m = int(W.size());
for (int i = 0; i < m; i++)
if (U[i] > V[i]) std::swap(U[i], V[i]);
std::vector<int> I(m);
for (int i = 0; i < m; i++) I[i] = i;
std::sort(I.begin(), I.end(), [&](int l, int r) { return V[l] < V[r]; });
std::stable_sort(I.begin(), I.end(),
[&](int l, int r) { return U[l] < U[r]; });
std::vector<int> Q(m);
std::vector<int> U2;
std::vector<int> V2;
std::vector<Weight> W2;
for (int i = 0; i < m; i++) {
int e = I[i];
if (i == 0 || U2.back() != U[e] || V2.back() != V[e]) {
U2.push_back(U[e]);
V2.push_back(V[e]);
W2.push_back(0);
}
W2.back() += W[e];
Q[e] = int(U2.size()) - 1;
}
auto simple_res =
CountC4Simple<Weight>(n, std::move(U2), std::move(V2), std::move(W2));
std::vector<Weight> ans(m);
for (int e = 0; e < m; e++) ans[e] = simple_res[Q[e]];
return ans;
}
} // namespace nachia
//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
// using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
using namespace Nyaan;
template <typename F>
void enumerate_triangle(const vvi& g, const F& f) {
int N = sz(g);
auto ord = mkord(N, [&](int i, int j) { return g[i].size() < g[j].size(); });
auto inv = mkinv(ord);
vvi h(N);
vp es;
rep(i, N) each(j, g[i]) if (inv[i] < inv[j]) {
es.emplace_back(i, j), h[i].push_back(j);
}
V<bool> flg(N, 0);
each(e, es) {
each(u, h[e.first]) flg[u] = 1;
each(v, h[e.second]) if (flg[v]) f(v, e.first, e.second);
each(u, h[e.first]) flg[u] = 0;
}
}
void q() {
ini(N, M);
vvi g = graph(N, M);
vp es;
rep(i, N) each(j, g[i]) if (i < j) es.emplace_back(i, j);
vi deg(N);
rep(i, N) deg[i] = sz(g[i]);
ll C3_num = 0;
enumerate_triangle(g, [&](int, int, int) { C3_num++; });
ll C4_num = 0;
{
vi u, v;
each2(i, j, es) u.push_back(i), v.push_back(j);
auto c4 = nachia::CountC4(N, u, v, vl(M, 1));
C4_num = Sum(c4) / 4;
}
Binomial<mint> C;
auto f1 = [&]() -> mint { return C(N, 4); };
auto f2 = [&]() -> mint { return C(N - 2, 2) * M; };
auto f3 = [&]() -> mint {
mint s = 0;
rep(i, N) s += C(deg[i], 2);
return s * (N - 3);
};
auto f4 = [&]() -> mint {
mint s = 0;
rep(i, N) s += C(deg[i], 2);
return C(M, 2) - s;
};
auto f5 = [&]() -> mint {
mint s = 0;
rep(i, N) s += C(deg[i], 3);
return s;
};
auto f6 = [&]() -> mint {
mint s = 0;
each2(u, v, es) s += (deg[u] - 1) * (deg[v] - 1);
s -= 3 * C3_num;
return s;
};
auto f7 = [&]() -> mint { return mint{C3_num} * (N - 3); };
auto f8 = [&]() -> mint { return C4_num; };
auto f9 = [&]() -> mint {
vi cnt(N);
enumerate_triangle(
g, [&](int i, int j, int k) { cnt[i]++, cnt[j]++, cnt[k]++; });
mint s = 0;
rep(u, N) s += 1LL * (deg[u] - 2) * cnt[u];
return s;
};
auto f10 = [&]() -> mint {
UnerasableHashMap<ll, ll> mp;
enumerate_triangle(g, [&](ll i, ll j, ll k) {
mp[(min(i, j) << 32) + max(i, j)]++;
mp[(min(j, k) << 32) + max(j, k)]++;
mp[(min(k, i) << 32) + max(k, i)]++;
});
mint s = 0;
mp.enumerate([&](ll, ll val) { s += C(val, 2); });
return s;
};
trc(f1(), f2(), f3(), f4(), f5(), f6(), f7(), f8(), f9(), f10());
mint T = mint{-1} / 3;
mint ans = 0;
ans += f1();
ans -= f2();
ans += f3();
ans += f4();
ans -= f5();
ans -= f6();
ans -= f7();
ans += f8() * 2 / 3;
ans += f9();
ans -= f10() * 2 / 3;
out(T, ans);
// trc(mint{13} + T * 2);
}
void Nyaan::solve() {
int t = 1;
// in(t);
while (t--) q();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0