結果

問題 No.2985 May Count Induced C4 Subgraphs
ユーザー ygussanyygussany
提出日時 2024-12-10 22:04:52
言語 C
(gcc 12.3.0)
結果
WA  
実行時間 -
コード長 7,892 bytes
コンパイル時間 718 ms
コンパイル使用メモリ 37,976 KB
実行使用メモリ 119,424 KB
最終ジャッジ日時 2024-12-10 22:05:40
合計ジャッジ時間 43,848 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
12,168 KB
testcase_01 AC 1 ms
6,816 KB
testcase_02 WA -
testcase_03 AC 1 ms
6,816 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 1 ms
6,820 KB
testcase_06 TLE -
testcase_07 TLE -
testcase_08 TLE -
testcase_09 TLE -
testcase_10 TLE -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.c: In function 'count_triangles_sub':
main.c:86:23: warning: implicit declaration of function 'exit' [-Wimplicit-function-declaration]
   86 |         if (n > 1000) exit(-1);
      |                       ^~~~
main.c:2:1: note: include '<stdlib.h>' or provide a declaration of 'exit'
    1 | #include <stdio.h>
  +++ |+#include <stdlib.h>
    2 | 
main.c:86:23: warning: incompatible implicit declaration of built-in function 'exit' [-Wbuiltin-declaration-mismatch]
   86 |         if (n > 1000) exit(-1);
      |                       ^~~~
main.c:86:23: note: include '<stdlib.h>' or provide a declaration of 'exit'

ソースコード

diff #

#include <stdio.h>

const int Mod = 998244353;

typedef struct HList {
	struct HList *next;
	int u, w;
} hlist;

#define HASH 5000011
const int H_Mod = HASH;

int hash_func(int u, int w)
{
	return (((long long)u << 30) + w) % H_Mod;
}

int hn = 0;
hlist *hash[HASH] = {}, hd[200001];

int is_adjacent(int u, int w)
{
	if (u > w) {
		u ^= w;
		w ^= u;
		u ^= w;
	}
	
	int h;
	hlist *hp;
	h = hash_func(u, w);
	for (hp = hash[h]; hp != NULL; hp = hp->next) if (hp->u == u && hp->w == w) return 1;
	return 0;
}

typedef struct Edge {
	struct Edge *next;
	int v;
} edge;

typedef struct {
	int key, id;
} data;

typedef struct {
	data obj[400001];
	int size;
} min_heap;

void push(min_heap* h, data x)
{
	int i = ++(h->size), j = i >> 1;
	data tmp;
	h->obj[i] = x;
	while (j > 0) {
		if (h->obj[i].key < h->obj[j].key) {
			tmp = h->obj[j];
			h->obj[j] = h->obj[i];
			h->obj[i] = tmp;
			i = j;
			j >>= 1;
		} else break;
	}
}

data pop(min_heap* h)
{
	int i = 1, j = 2;
	data output = h->obj[1], tmp;
	h->obj[1] = h->obj[(h->size)--];
	while (j <= h->size) {
		if (j < h->size && h->obj[j^1].key < h->obj[j].key) j ^= 1;
		if (h->obj[j].key < h->obj[i].key) {
			tmp = h->obj[j];
			h->obj[j] = h->obj[i];
			h->obj[i] = tmp;
			i = j;
			j <<= 1;
		} else break;
	}
	return output;
}

void count_triangles_sub(int n, int v[], long long *num_edge, long long *num_triangle)
{
	if (n > 1000) exit(-1);
	
	int i, j, k;
	static int adj_mat[1001][1001] = {};
	for (i = 1, *num_edge = 0; i <= n; i++) for (j = i + 1; j <= n; j++) if (is_adjacent(v[i], v[j]) != 0) { adj_mat[i][j] = 1; (*num_edge)++; }
	if (*num_edge == n * (n - 1) / 2) *num_triangle = n * (n - 1) * (n - 2) / 6;
	else if (*num_edge == n * (n - 1) / 2 - 1) *num_triangle = n * (n - 1) * (n - 2) / 6 - (n - 2);
	else {
		for (i = 1, *num_triangle = 0; i <= n; i++) for (j = i + 1; j <= n; j++) for (k = j + 1; k <= n; k++) *num_triangle += adj_mat[i][j] & adj_mat[i][k] & adj_mat[j][k];
	}
	for (i = 1; i <= n; i++) for (j = i + 1; j <= n; j++) adj_mat[i][j] = 0;
}

int solve(int N, int M, int U[], int V[])
{
	int i;
	for (i = 1; i <= M; i++) {
		if (U[i] > V[i]) {
			U[i] ^= V[i];
			V[i] ^= U[i];
			U[i] ^= V[i];
		}
	}
	if (N <= 3) return 0;
	
	int h, u, w;
	static int ed[200001][2];
	for (i = 1, hn = 0; i <= M; i++) {
		u = U[i];
		w = V[i];
		ed[i][0] = u;
		ed[i][1] = w;
		h = hash_func(u, w);
		hd[hn].u = u;
		hd[hn].w = w;
		hd[hn].next = hash[h];
		hash[h] = &(hd[hn++]);
	}
	
	static int deg[200001];
	static edge *adj[200001], e[400001], *ep;
	for (u = 1; u <= N; u++) {
		deg[u] = 0;
		adj[u] = NULL;
	}
	for (i = 1; i <= M; i++) {
		u = ed[i][0];
		w = ed[i][1];
		e[i*2-1].v = w;
		e[i*2-1].next = adj[u];
		adj[u] = &(e[i*2-1]);
		e[i*2].v = u;
		e[i*2].next = adj[w];
		adj[w] = &(e[i*2]);
		deg[u]++;
		deg[w]++;
	}
	
	int r, j, tail;
	static int flag[200001], q[200001];
	long long ans, tmp;
	ans = (__int128)N * (N - 1) * (N - 2) * (N - 3) / 24 % Mod;
	ans += Mod - (long long)M * (N - 2) * (N - 3) / 2 % Mod;
	for (u = 1, tmp = (long long)M * (M - 1) / 2; u <= N; u++) {
		flag[u] = 0;
		tmp -= (long long)deg[u] * (deg[u] - 1) / 2;
		ans += (long long)deg[u] * (deg[u] - 1) / 2 * (N - 3) % Mod;
		ans += Mod - (long long)deg[u] * (deg[u] - 1) * (deg[u] - 2) / 6 % Mod;
	}
	ans += tmp;
	for (i = 1; i <= M; i++) {
		u = ed[i][0];
		w = ed[i][1];
		ans += Mod - (long long)(deg[u] - 1) * (deg[w] - 1) % Mod;
	}
	/*
	for (u = 1; u <= N; u++) {
		for (ep = adj[u], tail = 0; ep != NULL; ep = ep->next) {
			w = ep->v;
			flag[w] = 1;
			q[++tail] = w;
		}
		if (tail >= 3) {
			if (tail <= 500) {
				for (i = 1, tmp = 0; i <= tail; i++) for (j = i + 1; j <= tail; j++) tmp += is_adjacent(q[i], q[j]);
			} else {
				for (i = 1, tmp = 0; i <= M; i++) if (flag[ed[i][0]] != 0 && flag[ed[i][1]] != 0) tmp++;
			}
			ans += tmp * (tail - 2) % Mod;
		}
		for (i = 1; i <= tail; i++) flag[q[i]] = 0;
	}
	*/
	
	long long num_triangle = 0, tmp_num_edge, tmp_num_triangle;
	static min_heap he;
	data d;
	he.size = 0;
	for (u = 1; u <= N; u++) {
		d.key = deg[u];
		d.id = u;
		push(&he, d);
	}
	while (he.size > 0) {
		d = pop(&he);
		u = d.id;
		if (flag[u] != 0) continue;
		flag[u] = 1;
		for (ep = adj[u], tail = 0; ep != NULL; ep = ep->next) {
			w = ep->v;
			if (flag[w] == 0) {
				q[++tail] = w;
				deg[w]--;
				d.key = deg[w];
				d.id = w;
				push(&he, d);
			}
		}
		for (i = 1; i <= tail; i++) for (j = i + 1; j <= tail; j++) num_triangle += is_adjacent(q[i], q[j]);
		if (tail >= 3) {
			count_triangles_sub(tail, q, &tmp_num_edge, &tmp_num_triangle);
			ans += Mod - tmp_num_triangle * 2 % Mod;
		}
	}
	ans += num_triangle * 3;
	ans += Mod - num_triangle * (N - 3) % Mod;
	for (i = 1; i <= M; i++) {
		u = ed[i][0];
		w = ed[i][1];
		h = hash_func(u, w);
		hash[h] = NULL;
	}
	return ans % Mod;
}

int naive(int N, int M, int U[], int V[])
{
	int i, u, w;
	static int adj[101][101] = {};
	for (i = 1; i <= M; i++) {
		u = U[i];
		w = V[i];
		adj[u][w] = 1;
		adj[w][u] = 1;
	}
	
	int x, y, ans = 0;
	for (u = 1; u <= N; u++) {
		for (w = u + 1; w <= N; w++) {
			for (x = w + 1; x <= N; x++) {
				for (y = x + 1; y <= N; y++) {
					if (adj[u][w] == 0 && adj[u][x] == 0 && adj[u][y] == 0 && adj[w][x] == 0 && adj[w][y] == 0 && adj[x][y] == 0) ans++;
					else if (adj[u][w] == 1 && adj[u][x] == 1 && adj[u][y] == 0 && adj[w][x] == 0 && adj[w][y] == 1 && adj[x][y] == 1) ans--;
					else if (adj[u][w] == 1 && adj[u][x] == 0 && adj[u][y] == 1 && adj[w][x] == 1 && adj[w][y] == 0 && adj[x][y] == 1) ans--;
					else if (adj[u][w] == 0 && adj[u][x] == 1 && adj[u][y] == 1 && adj[w][x] == 1 && adj[w][y] == 1 && adj[x][y] == 0) ans--;
				}
			}
		}
	}
	for (i = 1; i <= M; i++) {
		u = U[i];
		w = V[i];
		adj[u][w] = 0;
		adj[w][u] = 0;
	}
	if (ans < 0) ans += Mod;
	return ans;
}

#define MT_N 624
#define MT_M 397
#define MT_MATRIX_A 0x9908b0dfUL
#define MT_UPPER_MASK 0x80000000UL
#define MT_LOWER_MASK 0x7fffffffUL

static unsigned int mt[MT_N];
static int mti = MT_N + 1;

void init_genrand(unsigned int s)
{
    mt[0] = s & 0xffffffffUL;
    for (mti = 1; mti < MT_N; mti++) {
        mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti); 
        mt[mti] &= 0xffffffffUL;
    }
}

unsigned int genrand()
{
    unsigned int y;
    static unsigned int mag01[2] = {0x0UL, MT_MATRIX_A};

    if (mti >= MT_N) {
        int kk;
        if (mti == MT_N + 1) init_genrand(5489UL);
		
        for (kk = 0; kk < MT_N - MT_M; kk++) {
            y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
            mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y&0x1UL];
        }
        for (; kk < MT_N - 1; kk++) {
            y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
            mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y&0x1UL];
        }
        y = (mt[MT_N-1] & MT_UPPER_MASK) | (mt[0] & MT_LOWER_MASK);
        mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y&0x1UL];

        mti = 0;
    }
  
    y = mt[mti++];

    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);

    return y;
}

int main()
{
	int i, N, M, U[200001], V[200001];
	scanf("%d %d", &N, &M);
	for (i = 1; i <= M; i++) scanf("%d %d", &(U[i]), &(V[i]));
	printf("%d %d\n", Mod - 1, solve(N, M, U, V));
	
	/*
	int u, w, ans[2], adj_mat[101][101];
	while (1) {
		for (u = 1; u <= N; u++) for (w = 1; w <= N; w++) adj_mat[u][w] = 0;
		for (u = 1, M = 0; u <= N; u++) {
			for (w = u + 1; w <= N; w++) {
				adj_mat[u][w] = genrand() % 2;
				adj_mat[w][u] = adj_mat[u][w];
				if (adj_mat[u][w] == 1) {
					U[++M] = u;
					V[M] = w;
				}
			}
		}
		ans[0] = naive(N, M, U, V);
		ans[1] = naive(N, M, U, V);
		printf("[%d %d]\n", ans[0], ans[1]);
		fflush(stdout);
		if (ans[0] != ans[1]) {
			for (i = 1; i <= M; i++) printf("%d %d\n", U[i], V[i]);
			printf("[%d %d]\n", ans[0], ans[1]);
			break;
		}
	}
	*/
	fflush(stdout);
	return 0;
}
0