結果
問題 | No.2985 May Count Induced C4 Subgraphs |
ユーザー | wsrtrt |
提出日時 | 2024-12-13 06:20:46 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 19,378 bytes |
コンパイル時間 | 5,183 ms |
コンパイル使用メモリ | 302,208 KB |
実行使用メモリ | 817,888 KB |
最終ジャッジ日時 | 2024-12-13 06:21:18 |
合計ジャッジ時間 | 31,105 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 1,512 ms
433,088 KB |
testcase_07 | AC | 1,349 ms
433,308 KB |
testcase_08 | AC | 1,392 ms
433,040 KB |
testcase_09 | AC | 1,330 ms
431,928 KB |
testcase_10 | AC | 1,296 ms
433,292 KB |
testcase_11 | MLE | - |
testcase_12 | AC | 433 ms
51,584 KB |
testcase_13 | AC | 439 ms
51,500 KB |
testcase_14 | AC | 372 ms
51,504 KB |
testcase_15 | AC | 311 ms
51,496 KB |
testcase_16 | AC | 308 ms
51,368 KB |
testcase_17 | AC | 2,213 ms
234,404 KB |
testcase_18 | AC | 2,158 ms
233,896 KB |
testcase_19 | AC | 2,372 ms
234,656 KB |
testcase_20 | AC | 2,357 ms
140,548 KB |
testcase_21 | AC | 2,435 ms
234,644 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #define INT(...) \ int __VA_ARGS__; \ IN(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ IN(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ IN(__VA_ARGS__) #define CHR(...) \ char __VA_ARGS__; \ IN(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ IN(__VA_ARGS__) #define ll long long #define yes cout<<"Yes"<<"\n" #define no cout<<"No"<<"\n" #define rep(i,a,b) for(int i=a;i<b;i++) #define rrep(i,a,b) for(int i=a;i>=b;i--) #define fore(i,a) for(auto &i:a) #define all(x) (x).begin(),(x).end() #define allr(x) (x).rbegin(),(x).rend() #define SUM(v) accumulate(all(v), 0LL) #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define pii pair<int, int> #define pll pair<long long,long long> #define pb push_back #define eb emplace_back #define ff first #define ss second #define vi vector<int> #define vll vector<long long> #define vc vector<char> #define vvi vector<vector<int>> #define vec(type, name, ...) vector<type> name(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ IN(name) int scan() { return getchar(); } void scan(int &a) { cin >> a; } void scan(long long &a) { cin >> a; } void scan(char &a) { cin >> a; } void scan(double &a) { cin >> a; } void scan(string &a) { cin >> a; } template <class T, class S> void scan(pair<T, S> &p) { scan(p.first), scan(p.second); } template <class T> void scan(vector<T> &); template <class T> void scan(vector<T> &a) { for(auto &i : a) scan(i); } template <class T> void scan(T &a) { cin >> a; } void IN() {} template <class Head, class... Tail> void IN(Head &head, Tail &...tail) { scan(head); IN(tail...); } template <class T> void print(const T &a) { cout << a; } void OUT() { cout << endl; } template <class Head, class... Tail> void OUT(const Head &head, const Tail &...tail) { print(head); if(sizeof...(tail)) cout << ' '; OUT(tail...); } #define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ IN(name) #define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) template<typename T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>; template <class T> pair<T, T> operator-(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff - y.ff, x.ss - y.ss); } template <class T> pair<T, T> operator+(const pair<T, T> &x, const pair<T, T> &y) { return pair<T, T>(x.ff + y.ff, x.ss + y.ss); } template <class T> pair<T, T> operator&(const pair<T, T> &l, const pair<T, T> &r) { return pair<T, T>(max(l.ff, r.ff), min(l.ss, r.ss)); } template <class T> vector<T> &operator--(vector<T> &v) { fore(e, v) e--; return v; } template <class T> vector<T> operator--(vector<T> &v, int) { auto res = v; fore(e, v) e--; return res; } template <class T> vector<T> &operator++(vector<T> &v) { fore(e, v) e++; return v; } template <class T> vector<T> operator++(vector<T> &v, int) { auto res = v; fore(e, v) e++; return res; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } #define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()) //座標圧縮 template <typename T> void zip(vector<T> &x) { vector<T> y = x; UNIQUE(y); for(int i = 0; i < x.size(); ++i) { x[i] = lb(y, x[i]); } } template <class T> T ceil(T x, T y) { assert(y >= 1); return (x > 0 ? (x + y - 1) / y : x / y); } template <class T> T floor(T x, T y) { assert(y >= 1); return (x > 0 ? x / y : (x + y - 1) / y); } long long POW(long long x, int n) { long long res = 1LL; for(; n; n >>= 1, x *= x) if(n & 1) res *= x; return res; } //0^n=0 long long modpow(long long a, long long n, long long mod) { a%=mod; assert(a!=0||n!=0); if(a==0)return 0; long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } //return 0<=a&&a<h&&0<=b&&b<w; inline bool ingrid(ll a,ll b,ll h,ll w){return 0<=a&&a<h&&0<=b&&b<w;} //return 0<=a&&a<n; inline bool inl(int a,int n){return 0<=a&&a<n;} // bit 演算系 ll pow2(int i) { return 1LL << i; } int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int lowbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); } int lowbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); } // int allbit(int n) { return (1 << n) - 1; } ll allbit(ll n) { return (1LL << n) - 1; } int popcount(signed t) { return __builtin_popcount(t); } int popcount(ll t) { return __builtin_popcountll(t); } bool ispow2(int i) { return i && (i & -i) == i; } int in() { int x; cin >> x; return x; } ll lin() { unsigned long long x; cin >> x; return x; } long long sqrtll(long long x) { assert(x >= 0); long long rev = sqrt(x); while(rev * rev > x) --rev; while((rev+1) * (rev+1)<=x) ++rev; return rev; } int logN(long long n){ int ret=1; while((1LL<<ret)<n)ret++; return ret; } const double PI=3.1415926535897932384626433832795028841971; const ll MOD998 = 998244353; const int INFI = numeric_limits<int>::max() / 2; const long long INFL = numeric_limits<long long>::max() / 2; #define inf INFINITY template<class T> void debug(vector<T> a){ rep(i,0,(int)a.size()){ cout<<a[i]<<' '; } cout<<endl; return; } bool palindrome(const string& s){ return equal(all(s),s.rbegin()); } template <std::uint_fast64_t Modulus> class modint { using u64 = std::uint_fast64_t; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {} constexpr u64 &val() noexcept { return a; } constexpr const u64 &val() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } friend bool operator==(const modint& a,const modint& b) { return a.val()==b.val(); } friend bool operator!=(const modint& a,const modint& b) { return a.val()!=b.val(); } }; using mint9=modint<998244353>; using mint1=modint<1000000007>; //costを指定しないと重みなし辺になります struct Edge{ int from,to; ll cost; int idx{0}; Edge()=default; Edge(int from,int to,ll cost=1):from(from),to(to),cost(cost){} operator int() const {return to;} }; constexpr pii dx4[4] = {pii{-1, 0},pii{0, -1}, pii{0, 1}, pii{1, 0} }; constexpr pii dx8[8] = {{1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}}; constexpr pii dx[100]={{1,0},{0,1},{1,1},{0,0}}; #define el "\n" #define endl "\n" #define fastio std::cin.sync_with_stdio(false);std::cin.tie(nullptr); //{1,1,1,1,1,1,1,1,1,1,1} mint9 solveVec1(int n,int m){ mint9 res=1; rep(i,0,4)res*=n-i; rep(i,1,4+1)res/=i; return res; } //{0,1,2,2,3,3,3,4,4,5,6} mint9 solveVec2(int n,int m){ mint9 res=12*m; rep(i,0,2)res*=n-i-2; res/=24; return res; } vector<ll> d; //{0,0,1,0,3,2,3,4,5,8,12}, mint9 solveVec3(int n,int m,vi &u,vi &v){ mint9 res=0; d.resize(n); rep(i,0,m){ d[u[i]]++;d[v[i]]++; } rep(i,0,n){ if(d[i]!=0)res+=(d[i]-1)*d[i]/2; } res*=(n-3); return res; } //{0,0,0,1,0,1,0,2,1,2,3} mint9 solveVec4(int n,ll m,vi &u,vi &v){ mint9 res=0; rep(i,0,m){ res+=(m-d[u[i]]-d[v[i]]+1); } res/=2; return res; } //{0,0,0,0,1,0,0,0,1,2,4} mint9 solveVec5(int n,int m,vi &u,vi &v){ mint9 res=0; rep(i,0,n){ if(d[i]>=3){ mint9 tmp=d[i]*(d[i]-1);tmp*=(d[i]-2); tmp/=6; res+=tmp; } } return res; } vll tdeg; vll cnt; template<class G> vector<tuple<int,int,int>> EnumerateTriangles(G& g){ int n=g.size(); vector<vector<Edge>> h(n); vector<int> deg(n); for(int i=0;i<n;i++){ for(auto &j:g[i]){ deg[i]++; deg[j]++; } } for(int i=0;i<n;i++){ for(auto &j:g[i]){ if((deg[i]==deg[(int)j] && i < (int)j) || deg[i] < deg[(int)j]){ h[i].push_back({i,j}); h[i].back().idx=j.idx; } } } vector<tuple<int,int,int>> res; vector<int> flag(n,-1); for(int i=0;i<n;i++){ for(auto &j:h[i]){ flag[(int)j] = j.idx; } for(auto &j:h[i]){ for(auto &k:h[(int)j]){ if(flag[(int)k]!=-1){ res.emplace_back(i,j,k); cnt[j.idx]++; cnt[k.idx]++; cnt[flag[(int)k]]++; tdeg[i]++; tdeg[j]++; tdeg[k]++; } } } for(auto &j:h[i]){ flag[(int)j] = -1; } } return res; }; /* 辺の数を M として三角形の数は高々 Msqrt(2M) 個 グラフの三角形をO(Msqrt(M))で列挙できる 辺の向きを(次数の小さい頂点)->(次数の大きい頂点)とすることで出次数をいい感じに抑えつつ DAGにできる 参考 https://ei1333.github.io/library/graph/others/enumerate-triangles.hpp.html https://www.slideshare.net/slideshow/trianguler/38443802#58 */ vector<tuple<int,int,int>> tr; //{0,0,0,0,0,1,0,4,2,6,12} mint9 solveVec6(int n,int m,vi u,vi v){ mint9 res=0; rep(i,0,m){ res+=(d[u[i]]-1)*(d[v[i]]-1); } res-=3*(ll)tr.size(); return res; } //{0,0,0,1,0,1,0,2,1,2,3}, mint9 solveVec7(int n,int m,vi &u,vi &v){ mint9 res=tr.size(); res*=(n-3); return res; } //{0,0,0,0,0,0,0,0,1,4,12} mint9 solveVec9(int n,int m,vi &u,vi &v){ mint9 res=0; rep(i,0,m){ res+=tdeg[u[i]]+tdeg[v[i]]; } res-=6*(ll)tr.size(); return res; } //{0,0,0,0,0,0,0,0,0,1,6} mint9 solveVec10(int n,int m,vi &u,vi &v){ mint9 res=0; rep(i,0,m){ res+=(cnt[i]-1)*(cnt[i])/2; } return res; } class CountingC4 { private: int V, threshold; vector<vector<int> > G; vector<vector<array<int, 2> > > memo; vector<int> flag1, flag2; void process_high_degree(long long& ans){ for(int i = 0; i < V; ++i){ if((int)G[i].size() <= threshold) continue; for(const int u : G[i]){ if(u > i) flag1[u] = 1; flag2[u] = 1; } for(int j = 0; j < i; ++j){ if((int)G[j].size() > threshold) continue; long long cnt1 = 0, cnt2 = 0; for(const int u : G[j]){ if(u < j || !flag2[u]) continue; if((int)G[u].size() > threshold) ++cnt1; else ++cnt2; } ans += (cnt1 + cnt2) * (cnt1 + cnt2 - 1) / 2; } for(int j = i + 1; j < V; ++j){ long long cnt = 0; for(const int u : G[j]){ if(flag1[u]) ++cnt; } ans += cnt * (cnt - 1) / 2; } for(const int u : G[i]) flag1[u] = flag2[u] = 0; } } void process_low_degree(long long& ans){ for(int i = 0; i < V; ++i){ if((int)G[i].size() > threshold) continue; for(const int u : G[i]){ for(const int v : G[i]){ if(v > u) memo[u].push_back({i, v}); } } } for(int i = 0; i < V; ++i){ for(const auto& e : memo[i]){ if(e[0] < i) ++flag1[e[1]]; else ++flag2[e[1]]; } for(const auto& e : memo[i]){ ans += (long long)(flag1[e[1]] + 2 * flag2[e[1]] - 1) * flag1[e[1]] / 2; flag1[e[1]] = flag2[e[1]] = 0; } } } public: CountingC4(const int node_size) : V(node_size), threshold(0), G(V), memo(V), flag1(V, 0), flag2(V, 0){} void add_edge(const int u, const int v){ G[u].push_back(v), G[v].push_back(u); ++threshold; } long long solve(){ threshold = floor(sqrt(2 * threshold)) / 2; long long ans = 0; process_high_degree(ans); process_low_degree(ans); return ans; } }; //{0,0,0,0,0,0,0,1,0,1,3} mint9 solveVec14(int n,int m,vi &u,vi &v){ CountingC4 cc(n); rep(i,0,m){ cc.add_edge(u[i],v[i]); } mint9 res=cc.solve(); return res; } long long modinv(long long a, long long mod) { long long b = mod, u = 1, v = 0; while (b) { long long t = a/b; a -= t*b; swap(a, b); u -= t*v; swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } // matrix template<int MOD> struct Matrix { vector<vector<long long> > val; Matrix(int n, int m, long long x = 0) : val(n, vector<long long>(m, x)) {} void init(int n, int m, long long x = 0) {val.assign(n, vector<long long>(m, x));} size_t size() const {return val.size();} inline vector<long long>& operator [] (int i) {return val[i];} }; template<int MOD> int GaussJordan(Matrix<MOD> &A, bool is_extended = false) { int m = A.size(), n = A[0].size(); for (int row = 0; row < m; ++row) for (int col = 0; col < n; ++col) A[row][col] = (A[row][col] % MOD + MOD) % MOD; int rank = 0; for (int col = 0; col < n; ++col) { if (is_extended && col == n-1) break; int pivot = -1; for (int row = rank; row < m; ++row) { if (A[row][col] != 0) { pivot = row; break; } } if (pivot == -1) continue; swap(A[pivot], A[rank]); auto inv = modinv(A[rank][col], MOD); for (int col2 = 0; col2 < n; ++col2) A[rank][col2] = A[rank][col2] * inv % MOD; for (int row = 0; row < m; ++row) { if (row != rank && A[row][col]) { auto fac = A[row][col]; for (int col2 = 0; col2 < n; ++col2) { A[row][col2] -= A[rank][col2] * fac % MOD; if (A[row][col2] < 0) A[row][col2] += MOD; } } } ++rank; } return rank; } void solve(ll n,ll m,vi &u,vi &v){ vector<vector<Edge>> g(n); rep(i,0,m){ g[u[i]].pb({u[i],v[i]}); g[u[i]].back().idx=i; g[v[i]].pb({v[i],u[i]}); g[v[i]].back().idx=i; } tr=EnumerateTriangles(g); Matrix<998244353> mt(10,12); mt.val={ {1,1,1,1,1,1,1,1,1,1,1,(ll)solveVec1(n,m).val()}, {0,1,2,2,3,3,3,4,4,5,6,(ll)solveVec2(n,m).val()}, {0,0,1,0,3,2,3,4,5,8,12,(ll)solveVec3(n,m,u,v).val()}, {0,0,0,1,0,1,0,2,1,2,3,(ll)solveVec4(n,m,u,v).val()}, {0,0,0,0,1,0,0,0,1,2,4,(ll)solveVec5(n,m,u,v).val()}, {0,0,0,0,0,1,0,4,2,6,12,(ll)solveVec6(n,m,u,v).val()}, {0,0,0,0,0,0,1,0,1,2,4,(ll)solveVec7(n,m,u,v).val()}, {0,0,0,0,0,0,0,1,0,1,3,(ll)solveVec14(n,m,u,v).val()}, {0,0,0,0,0,0,0,0,1,4,12,(ll)solveVec9(n,m,u,v).val()}, {0,0,0,0,0,0,0,0,0,1,6,(ll)solveVec10(n,m,u,v).val()} }; GaussJordan(mt,1); mint9 ans=mt[0].back(); mint9 p=1;p/=3; mint9 q=0;q-=p; cout<<q.val()<<' '; ans+=q*mt[7].back(); cout<<ans.val()<<' '; cout<<endl; } int main(){ fastio INT(n,m); tdeg.resize(n); cnt.resize(m); if(n<4){ OUT(0,0); return 0; } vi u(m),v(m); rep(i,0,m){ IN(u[i],v[i]); } u--;v--; solve(n,m,u,v); return 0; } /* { {1,1,1,1,1,1,1,1,1,1,1}, {0,1,2,2,3,3,3,4,4,5,6}, {0,0,1,0,3,2,3,4,5,8,12}, {0,0,0,1,0,1,0,2,1,2,3}, {0,0,0,0,1,0,0,0,1,2,4}, {0,0,0,0,0,1,0,4,2,6,12}, {0,0,0,0,0,0,1,0,1,2,4}, {0,0,0,0,0,0,0,1,0,1,3}, {0,0,0,0,0,0,0,0,1,4,12}, {0,0,0,0,0,0,0,0,0,1,6} }; */