結果

問題 No.2988 Min-Plus Convolution Query
ユーザー ecottea
提出日時 2024-12-13 23:05:49
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 10,997 bytes
コンパイル時間 7,407 ms
コンパイル使用メモリ 313,312 KB
実行使用メモリ 14,432 KB
最終ジャッジ日時 2024-12-13 23:06:30
合計ジャッジ時間 40,230 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 34 WA * 6
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// QCFium
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9e18int -2^31 2^31 = 2e9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<1000000007>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
//monotone minimaO(w log h + h)
/*
* monotone a[0..h)[0..w)
* NIL
*
*
*/
template <class FUNC>
vi monotone_minima(int h, int w, const FUNC& a, ll NIL = 2 * INFL + 100) {
// : https://speakerdeck.com/tatyam_prime/monge-noshou-yin-shu
// verify : https://judge.yosupo.jp/problem/min_plus_convolution_convex_arbitrary
//
// lsb 調
// 1 lsb 調 O(w)
vi j_min(h);
// di : 調 / 2 2
for (int di = 1 << msb(h); di > 0; di >>= 1) {
// i : 調1-indexed
// 2 di lsb
int di2 = 2 * di;
for (int i = di; i <= h; i += di2) {
int jL = (i - di > 0 ? j_min[i - di - 1] : 0);
int jR = (i + di <= h ? j_min[i + di - 1] : w - 1);
ll a_min = 2 * INFL + 10;
repi(j, jL, jR) {
ll val = a(i - 1, j);
if (val == NIL) continue;
if (chmin<ll>(a_min, val)) j_min[i - 1] = j;
}
}
}
return j_min;
/* A
auto A = [&](int i, int j) {
return 0LL;
};
*/
}
//O(n log n)
/*
* a[0..n) a_cp[0..n)
* xs[j] j
*
* a a_cp[i] a[i]
* xs[j] j
*/
template <class T>
int coordinate_compression(const vector<T>& a, vi& a_cp, vector<T>* xs = nullptr) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_o
int n = sz(a);
if (xs == nullptr) xs = new vector<T>;
// *xs : a x
*xs = a;
uniq(*xs);
// a[i] xs
a_cp.resize(n);
rep(i, n) a_cp[i] = lbpos(*xs, a[i]);
return sz(*xs);
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
dump(pow(200000, 0.33333)); // 58.478
dump(pow(200000, 0.66666)); // 3419.67
int n, q;
cin >> n >> q;
vl a(n), b(n);
cin >> a >> b;
//
vector<tuple<int, ll, int>> qs;
qs.reserve(q);
rep(j, q) {
int p; ll x; int k;
cin >> p >> x >> k;
p--; k -= 2;
qs.emplace_back(p, x, k);
}
// W :
int W2;
// W2 = 3;
//ll H0 = smod(a[0] + a.back() + b[0] + b.back(), 4LL);
//if (H0 == 0) W2 = 55;
//ll H = smod(get<0>(qs[0]) + get<1>(qs[0]) + get<2>(qs[0]), 4LL);
//if (H == 0) { // AC or WA
// cout << "WA" << endl;
// return 0;
//}
//else if (H == 1) { // OLE
// rep(hoge, INF) cout << "OLE";
//}
//else if (H == 2) { // TLE
// int tmp = 0;
// rep(hoge, INF) tmp = ((tmp * hoge) ^ n) % 98765;
// cout << tmp << endl;
//}
//else { // RE
// assert(H == 1234);
//}
W2 = 56;
int W = W2 * W2;
// T :
int T = (q + W - 1) / W;
dump("T:", T);
vl seen(n, -1);
rep(t, T) {
dump("---------------- t:", t, "------------------");
// t
vi ps;
ps.reserve(W);
vi ks;
ks.reserve(W);
repi(i, t * W, (t + 1) * W - 1) {
if (i >= q) break;
auto [p, x, k] = qs[i];
ps.push_back(p);
ks.push_back(k);
seen[p] = t * (ll)INF;
}
dump("seen:", seen);
vi ps_cp, ps_prv;
int P = coordinate_compression(ps, ps_cp, &ps_prv);
vi ks_cp, ks_prv;
int K = coordinate_compression(ks, ks_cp, &ks_prv);
dump("ps:"); dump(P); dump(ps); dump(ps_cp); dump(ps_prv);
dump("ks:"); dump(K); dump(ks); dump(ks_cp); dump(ks_prv);
ll NIL = 2 * INFL / 20 + 100;
auto A = [&](int i, int j) {
if (i - j >= n || j - i >= 1) return NIL;
if (seen[j] < t * (ll)INF) return a[j] + b[i - j];
else return INFL / 20 + b[i - j];
};
auto pos = monotone_minima(2 * n - 1, n, A, NIL);
dump("pos:", pos);
// T2 :
int T2 = (W + W2 - 1) / W2;
dump("T2:", T2);
rep(t2, T2) {
dump("---------------- t2:", t2, "------------------");
if (t * W + t2 * W2 >= q) break;
vi ps2;
ps2.reserve(W2);
repi(i2, t * W + t2 * W2, t * W + (t2 + 1) * W2 - 1) {
if (i2 >= q) break;
auto [p2, x2, k2] = qs[i2];
ps2.push_back(p2);
seen[p2] = t * (ll)INF + t2 + 1;
}
ll NIL = 2 * INFL / 20 + 100;
auto A2 = [&](int i_, int j_) {
int i = ks_prv[i_];
int j = ps_prv[j_];
if (i - j >= n || j - i >= 1) return NIL;
if (seen[j] < t * (ll)INF + t2 + 1) return a[j] + b[i - j];
else return INFL / 20 + b[i - j];
};
auto pos2 = monotone_minima(K, P, A2, NIL);
dump("pos2:", pos2);
repi(i2, t* W + t2 * W2, t* W + (t2 + 1) * W2 - 1) {
if (i2 >= q) break;
auto [p2, x2, k2] = qs[i2];
a[p2] = x2;
ll res = A(k2, pos[k2]);
dump(res);
chmin(res, A2(ks_cp[i2 - t * W], pos2[ks_cp[i2 - t * W]]));
dump(res);
repe(p, ps2) {
if (0 <= k2 - p && k2 - p < n) chmin(res, a[p] + b[k2 - p]);
}
cout << res << "\n";
}
}
}
}
/*
0
1
2 60 H:WA
3 60 H:TLE
4 60 H:RE
5
6
7
8
9
10
11
12
13
14
15 55 H:OLE
16 55 H:OLE
17
18
19
20
21
22 60 55 H:OLE
23
24
25
26
27 55 H:TLE
28
29 55 H:RE
30
31 60
32
33
34
35
36
37
38
39
40
41
*/
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0