結果

問題 No.2988 Min-Plus Convolution Query
ユーザー 👑 ygussany
提出日時 2024-12-14 20:33:56
言語 C
(gcc 13.3.0)
結果
WA  
実行時間 -
コード長 4,798 bytes
コンパイル時間 328 ms
コンパイル使用メモリ 33,536 KB
実行使用メモリ 8,832 KB
最終ジャッジ日時 2024-12-14 20:34:47
合計ジャッジ時間 40,830 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1 WA * 1
other AC * 16 WA * 12 TLE * 12
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
const int sup = 2000000001, inf = -sup;
void chmin(int *a, int b)
{
if (*a > b) *a = b;
}
void chmax(int *a, int b)
{
if (*a < b) *a = b;
}
// B should convex
// min[l3-r3] will be min-plus convolution of (A[l1-r1], B[l2-r2])
void min_plus_convolution(int l1, int r1, int l2, int r2, int l3, int r3, int A[], int B[], int argmin[])
{
if (l3 > r3) return;
chmax(&l2, l3 - r1);
chmin(&r2, r3 - l1);
int i, j, k = (l3 + r3) / 2, min = sup;
for (i = l1, j = k - i; i <= r1 && j >= l2; i++, j--) {
if (j > r2) continue;
if (min > A[i] + B[j]) {
min = A[i] + B[j];
argmin[k] = i;
}
}
min_plus_convolution(l1, argmin[k], l2, r2, l3, k - 1, A, B, argmin);
min_plus_convolution(argmin[k], r1, l2, r2, k + 1, r3, A, B, argmin);
}
void solve(int N, int A[], int B[], int Q, int p[], int x[], int k[], int ans[])
{
static int argmin[400001];
min_plus_convolution(1, N, 1, N, 2, N * 2, A, B, argmin);
int h, i, j, NN = N * 2 + 1, head, tail;
static int appear[200001], q[2501];
for (i = 1; i <= N; i++) appear[i] = 0;
for (h = 1, tail = 0; h <= Q; h++) {
A[p[h]] = x[h];
if (appear[p[h]] == 0) {
appear[p[h]] = 1;
q[tail++] = p[h];
}
ans[h] = A[argmin[k[h]]] + B[k[h] - argmin[k[h]]];
for (head = 0; head < tail; head++) {
i = q[head];
j = k[h] - i;
if (1 <= j && j <= N) chmin(&(ans[h]), A[i] + B[j]);
}
if (tail == 2250) {
for (head = 0; head < tail; head++) appear[q[head]] = 0;
tail = 0;
min_plus_convolution(1, N, 1, N, 2, N * 2, A, B, argmin);
}
}
}
void naive(int N, int A[], int B[], int Q, int p[], int x[], int k[], int ans[])
{
int q;
static int min[400001], argmin[400001];
for (q = 1; q <= Q; q++) {
A[p[q]] = x[q];
min_plus_convolution(1, N, 1, N, 2, N * 2, A, B, argmin);
ans[q] = min[k[q]];
}
}
#define MT_N 624
#define MT_M 397
#define MT_MATRIX_A 0x9908b0dfUL
#define MT_UPPER_MASK 0x80000000UL
#define MT_LOWER_MASK 0x7fffffffUL
static unsigned int mt[MT_N];
static int mti = MT_N + 1;
void init_genrand(unsigned int s)
{
mt[0] = s & 0xffffffffUL;
for (mti = 1; mti < MT_N; mti++) {
mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
mt[mti] &= 0xffffffffUL;
}
}
unsigned int genrand()
{
unsigned int y;
static unsigned int mag01[2] = {0x0UL, MT_MATRIX_A};
if (mti >= MT_N) {
int kk;
if (mti == MT_N + 1) init_genrand(5489UL);
for (kk = 0; kk < MT_N - MT_M; kk++) {
y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y&0x1UL];
}
for (; kk < MT_N - 1; kk++) {
y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y&0x1UL];
}
y = (mt[MT_N-1] & MT_UPPER_MASK) | (mt[0] & MT_LOWER_MASK);
mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y&0x1UL];
mti = 0;
}
y = mt[mti++];
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
int main()
{
int i, N, Q;
static int A[200001], B[200001], p[200001], x[200001], k[200001], ans[200001];
scanf("%d %d", &N, &Q);
for (i = 1; i <= N; i++) scanf("%d", &(A[i]));
for (i = 1; i <= N; i++) scanf("%d", &(B[i]));
for (i = 1; i <= Q; i++) scanf("%d %d %d", &(p[i]), &(x[i]), &(k[i]));
solve(N, A, B, Q, p, x, k, ans);
for (i = 1; i <= Q; i++) printf("%d\n", ans[i]);
/*
for (i = 1; i <= N; i++) A[i] = genrand() % 10;
for (i = 1; i <= N; i++) B[i] = 0;
for (i = 1; i <= Q; i++) {
p[i] = genrand() % N + 1;
x[i] = genrand() % 10;
k[i] = genrand() % (N * 2 - 1) + 2;
}
solve(N, A, B, Q, p, x, k, ans);
for (i = 1; i <= Q; i++) printf("%d\n", ans[i]);
*/
/*
static int AA[200001], BB[200001], anss[200001];
while (1) {
for (i = 1; i <= N; i++) AA[i] = genrand() % 10;
for (i = 1; i <= N; i++) BB[i] = (i - (N + 1) / 2) * (i - (N + 1) / 2);
for (i = 1; i <= Q; i++) {
p[i] = genrand() % N + 1;
x[i] = genrand() % 10;
k[i] = genrand() % (N * 2 - 1) + 2;
}
for (i = 1; i <= N; i++) {
A[i] = AA[i];
B[i] = BB[i];
}
solve(N, A, B, Q, p, x, k, ans);
for (i = 1; i <= N; i++) {
A[i] = AA[i];
B[i] = BB[i];
}
naive(N, A, B, Q, p, x, k, anss);
for (i = 1; i <= Q; i++) if (ans[i] != anss[i]) break;
if (i <= Q) {
for (i = 1; i <= N; i++) printf("%d ", AA[i]);
printf("\n");
for (i = 1; i <= N; i++) printf("%d ", BB[i]);
printf("\n");
for (i = 1; i <= Q; i++) printf("%d %d %d\n", p[i], x[i], k[i]);
printf("\n");
for (i = 1; i <= Q; i++) printf("%d ", ans[i]);
printf("\n");
for (i = 1; i <= Q; i++) printf("%d ", anss[i]);
printf("\n");
break;
}
}
*/
fflush(stdout);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0