結果

問題 No.2990 Interval XOR
ユーザー 👑 ygussany
提出日時 2024-12-15 23:27:35
言語 C
(gcc 13.3.0)
結果
TLE  
実行時間 -
コード長 3,603 bytes
コンパイル時間 945 ms
コンパイル使用メモリ 34,432 KB
実行使用メモリ 29,056 KB
最終ジャッジ日時 2024-12-15 23:28:25
合計ジャッジ時間 48,130 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 22 TLE * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
const int Mod = 998244353;
const int bit[21] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576};
const int bit_inv[21] = {1, 499122177, 748683265, 873463809, 935854081, 967049217, 982646785, 990445569, 994344961, 996294657, 997269505, 997756929,
    998000641, 998122497, 998183425, 998213889, 998229121, 998236737, 998240545, 998242449};
// Fast Hardmard Transformation (XOR convolution)
void FHT(int d, int a[], int b[])
{
if (d == 0) {
b[0] = a[0];
return;
}
int i, j;
static int c[1048576];
FHT(d - 1, a, b);
FHT(d - 1, &(a[bit[d-1]]), &(b[bit[d-1]]));
for (i = 0; i < bit[d]; i++) c[i] = b[i];
for (i = 0, j = bit[d-1]; i < bit[d-1]; i++, j++) {
b[i] = c[i] + c[j];
if (b[i] >= Mod) b[i] -= Mod;
b[j] = c[i] - c[j];
if (b[j] < 0) b[j] += Mod;
}
}
void naive(int N, int M, int L[], int R[], int ans[])
{
int i, j;
static int tmp[1048576], a[1048576], b[1048576];
for (i = 0; i < L[1]; i++) ans[i] = 0;
for (; i <= R[1]; i++) ans[i] = 1;
for (; i < bit[N]; i++) ans[i] = 0;
for (j = 2; j <= M; j++) {
for (i = 0; i < L[j]; i++) tmp[i] = 0;
for (; i <= R[j]; i++) tmp[i] = 1;
for (; i < bit[N]; i++) tmp[i] = 0;
FHT(N, ans, a);
FHT(N, tmp, b);
for (i = 0; i < bit[N]; i++) tmp[i] = (long long)a[i] * b[i] % Mod;
FHT(N, tmp, ans);
for (i = 0; i < bit[N]; i++) ans[i] = (long long)ans[i] * bit_inv[N] % Mod;
}
}
void naive_faster(int N, int M, int L[], int R[], int ans[])
{
int i, j;
static int tmp[1048576], a[1048576], b[1048576];
for (i = 0; i < L[1]; i++) ans[i] = 0;
for (; i <= R[1]; i++) ans[i] = 1;
for (; i < bit[N]; i++) ans[i] = 0;
FHT(N, ans, a);
for (j = 2; j <= M; j++) {
for (i = 0; i < L[j]; i++) tmp[i] = 0;
for (; i <= R[j]; i++) tmp[i] = 1;
for (; i < bit[N]; i++) tmp[i] = 0;
FHT(N, tmp, b);
for (i = 0; i < bit[N]; i++) a[i] = (long long)a[i] * b[i] % Mod;
}
FHT(N, a, ans);
for (i = 0; i < bit[N]; i++) ans[i] = (long long)ans[i] * bit_inv[N] % Mod;
}
#define MT_N 624
#define MT_M 397
#define MT_MATRIX_A 0x9908b0dfUL
#define MT_UPPER_MASK 0x80000000UL
#define MT_LOWER_MASK 0x7fffffffUL
static unsigned int mt[MT_N];
static int mti = MT_N + 1;
void init_genrand(unsigned int s)
{
mt[0] = s & 0xffffffffUL;
for (mti = 1; mti < MT_N; mti++) {
mt[mti] = (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
mt[mti] &= 0xffffffffUL;
}
}
unsigned int genrand()
{
unsigned int y;
static unsigned int mag01[2] = {0x0UL, MT_MATRIX_A};
if (mti >= MT_N) {
int kk;
if (mti == MT_N + 1) init_genrand(5489UL);
for (kk = 0; kk < MT_N - MT_M; kk++) {
y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
mt[kk] = mt[kk+MT_M] ^ (y >> 1) ^ mag01[y&0x1UL];
}
for (; kk < MT_N - 1; kk++) {
y = (mt[kk] & MT_UPPER_MASK) | (mt[kk+1] & MT_LOWER_MASK);
mt[kk] = mt[kk+(MT_M-MT_N)] ^ (y >> 1) ^ mag01[y&0x1UL];
}
y = (mt[MT_N-1] & MT_UPPER_MASK) | (mt[0] & MT_LOWER_MASK);
mt[MT_N-1] = mt[MT_M-1] ^ (y >> 1) ^ mag01[y&0x1UL];
mti = 0;
}
y = mt[mti++];
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
int main()
{
int i, N, M, L[200001], R[200001];
scanf("%d %d", &N ,&M);
for (i = 1; i <= M; i++) scanf("%d %d", &(L[i]), &(R[i]));
static int ans[1048576];
naive_faster(N, M, L, R, ans);
for (i = 0; i < bit[N]; i++) printf("%d\n", ans[i]);
fflush(stdout);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0