結果

問題 No.2992 Range ABCD String Query
ユーザー 👑 hos.lyric
提出日時 2024-12-17 00:04:55
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 345 ms / 6,000 ms
コード長 6,143 bytes
コンパイル時間 1,721 ms
コンパイル使用メモリ 115,804 KB
実行使用メモリ 36,532 KB
最終ジャッジ日時 2024-12-17 00:05:10
合計ジャッジ時間 14,098 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i
    >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
// T: monoid representing information of an interval.
// T() should return the identity.
// T(S s) should represent a single element of the array.
// T::pull(const T &l, const T &r) should pull two intervals.
template <class T> struct SegmentTreePoint {
int logN, n;
vector<T> ts;
SegmentTreePoint() : logN(0), n(0) {}
explicit SegmentTreePoint(int n_) {
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
}
template <class S> explicit SegmentTreePoint(const vector<S> &ss) {
const int n_ = ss.size();
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
build();
}
T &at(int i) {
return ts[n + i];
}
void build() {
for (int u = n; --u; ) pull(u);
}
inline void pull(int u) {
ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
}
// Changes the value of point a to s.
template <class S> void change(int a, const S &s) {
assert(0 <= a); assert(a < n);
ts[a += n] = T(s);
for (; a >>= 1; ) pull(a);
}
// Applies T::f(args...) to point a.
template <class F, class... Args>
void ch(int a, F f, Args &&... args) {
assert(0 <= a); assert(a < n);
(ts[a += n].*f)(args...);
for (; a >>= 1; ) pull(a);
}
// Calculates the product for [a, b).
T get(int a, int b) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return T();
T prodL, prodR, t;
for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
if (a & 1) { t.pull(prodL, ts[a++]); prodL = t; }
if (b & 1) { t.pull(ts[--b], prodR); prodR = t; }
}
t.pull(prodL, prodR);
return t;
}
// Calculates T::f(args...) of a monoid type for [a, b).
// op(-, -) should calculate the product.
// e() should return the identity.
template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
auto
#else
decltype((std::declval<T>().*F())())
#endif
get(int a, int b, Op op, E e, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return e();
auto prodL = e(), prodR = e();
for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
if (a & 1) prodL = op(prodL, (ts[a++].*f)(args...));
if (b & 1) prodR = op((ts[--b].*f)(args...), prodR);
}
return op(prodL, prodR);
}
// Find min b s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from left to right.
// Returns n + 1 if there is no such b.
template <class F, class... Args>
int findRight(int a, F f, Args &&... args) {
assert(0 <= a); assert(a <= n);
if ((T().*f)(args...)) return a;
if (a == n) return n + 1;
a += n;
for (; ; a >>= 1) if (a & 1) {
if ((ts[a].*f)(args...)) {
for (; a < n; ) {
if (!(ts[a <<= 1].*f)(args...)) ++a;
}
return a - n + 1;
}
++a;
if (!(a & (a - 1))) return n + 1;
}
}
// Find max a s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from right to left.
// Returns -1 if there is no such a.
template <class F, class... Args>
int findLeft(int b, F f, Args &&... args) {
assert(0 <= b); assert(b <= n);
if ((T().*f)(args...)) return b;
if (b == 0) return -1;
b += n;
for (; ; b >>= 1) if ((b & 1) || b == 2) {
if ((ts[b - 1].*f)(args...)) {
for (; b <= n; ) {
if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
}
return b - n - 1;
}
--b;
if (!(b & (b - 1))) return -1;
}
}
}; // SegmentTreePoint<T>
////////////////////////////////////////////////////////////////////////////////
constexpr int INF = 1001001001;
struct Node {
int a[4][4];
Node() {
for (int u = 0; u < 4; ++u) for (int v = 0; v < 4; ++v) a[u][v] = INF;
for (int u = 0; u < 4; ++u) for (int v = u; v < 4; ++v) a[u][v] = 0;
}
Node(char c) {
for (int u = 0; u < 4; ++u) for (int v = 0; v < 4; ++v) a[u][v] = INF;
for (int u = 0; u < 4; ++u) for (int v = u; v < 4; ++v) a[u][v] = (u <= c - 'A' && c - 'A' <= v) ? 0 : 1;
}
void pull(const Node &l, const Node &r) {
for (int u = 0; u < 4; ++u) for (int v = 0; v < 4; ++v) a[u][v] = INF;
for (int u = 0; u < 4; ++u) for (int w = u; w < 4; ++w) for (int v = w; v < 4; ++v) chmin(a[u][v], l.a[u][w] + r.a[w][v]);
}
};
int N, Q;
char S[200'010];
int main() {
for (; ~scanf("%d%d", &N, &Q); ) {
scanf("%s", S);
SegmentTreePoint<Node> seg(vector<char>(S, S + N));
for (; Q--; ) {
int O;
scanf("%d", &O);
if (O == 1) {
int X;
char C;
scanf("%d %c", &X, &C);
--X;
seg.change(X, C);
} else if (O == 2) {
int L, R;
scanf("%d%d", &L, &R);
--L;
const auto res = seg.get(L, R);
printf("%d\n", res.a[0][3]);
} else {
assert(false);
}
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0