結果

問題 No.2993 冪乗乗 mod 冪乗
ユーザー tko919tko919
提出日時 2024-12-18 01:32:41
言語 C++23(gcc13)
(gcc 13.2.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 19,991 bytes
コンパイル時間 7,628 ms
コンパイル使用メモリ 329,344 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-18 01:32:56
合計ジャッジ時間 14,267 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 WA -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 WA -
testcase_12 AC 28 ms
6,816 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 RE -
testcase_24 RE -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)
#define ALL(v) (v).begin(), (v).end()
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define SZ(v) (int)v.size()
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())
#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())

using uint = unsigned int;
using ll = long long int;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;

template <typename T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T, typename U> T ceil(T x, U y) {
    assert(y != 0);
    if (y < 0)
        x = -x, y = -y;
    return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U> T floor(T x, U y) {
    assert(y != 0);
    if (y < 0)
        x = -x, y = -y;
    return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T> int popcnt(T x) {
    return __builtin_popcountll(x);
}
template <typename T> int topbit(T x) {
    return (x == 0 ? -1 : 63 - __builtin_clzll(x));
}
template <typename T> int lowbit(T x) {
    return (x == 0 ? -1 : __builtin_ctzll(x));
}

template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << "P(" << p.first << ", " << p.second << ")";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {
    os << "{";
    for (int i = 0; i < vec.size(); i++) {
        os << vec[i] << (i + 1 == vec.size() ? "" : ", ");
    }
    os << "}";
    return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    os << "{";
    for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
        os << "(" << itr->first << ", " << itr->second << ")";
        itr++;
        if (itr != map_var.end())
            os << ", ";
        itr--;
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {
    os << "{";
    for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
        os << *itr;
        ++itr;
        if (itr != set_var.end())
            os << ", ";
        itr--;
    }
    os << "}";
    return os;
}
#ifdef LOCAL
#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)
#else
#define show(...) true
#endif
template <typename T> void _show(int i, T name) {
    cerr << '\n';
}
template <typename T1, typename T2, typename... T3>
void _show(int i, const T1 &a, const T2 &b, const T3 &...c) {
    for (; a[i] != ',' && a[i] != '\0'; i++)
        cerr << a[i];
    cerr << ":" << b << " ";
    _show(i + 1, a, c...);
}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf

uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
    char num[10000][4];
    constexpr Pre() : num() {
        for (int i = 0; i < 10000; i++) {
            int n = i;
            for (int j = 3; j >= 0; j--) {
                num[i][j] = n % 10 | '0';
                n /= 10;
            }
        }
    }
} constexpr pre;

inline void load() {
    memmove(ibuf, ibuf + pil, pir - pil);
    pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
    pil = 0;
    if (pir < SZ)
        ibuf[pir++] = '\n';
}

inline void flush() {
    fwrite(obuf, 1, por, stdout);
    por = 0;
}

void rd(char &c) {
    do {
        if (pil + 1 > pir)
            load();
        c = ibuf[pil++];
    } while (isspace(c));
}

void rd(string &x) {
    x.clear();
    char c;
    do {
        if (pil + 1 > pir)
            load();
        c = ibuf[pil++];
    } while (isspace(c));
    do {
        x += c;
        if (pil == pir)
            load();
        c = ibuf[pil++];
    } while (!isspace(c));
}

template <typename T> void rd_real(T &x) {
    string s;
    rd(s);
    x = stod(s);
}

template <typename T> void rd_integer(T &x) {
    if (pil + 100 > pir)
        load();
    char c;
    do
        c = ibuf[pil++];
    while (c < '-');
    bool minus = 0;
    if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
        if (c == '-') {
            minus = 1, c = ibuf[pil++];
        }
    }
    x = 0;
    while ('0' <= c) {
        x = x * 10 + (c & 15), c = ibuf[pil++];
    }
    if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
        if (minus)
            x = -x;
    }
}

void rd(int &x) {
    rd_integer(x);
}
void rd(ll &x) {
    rd_integer(x);
}
void rd(i128 &x) {
    rd_integer(x);
}
void rd(uint &x) {
    rd_integer(x);
}
void rd(ull &x) {
    rd_integer(x);
}
void rd(u128 &x) {
    rd_integer(x);
}
void rd(double &x) {
    rd_real(x);
}
void rd(long double &x) {
    rd_real(x);
}

template <class T, class U> void rd(pair<T, U> &p) {
    return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T> void rd_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
        auto &x = std::get<N>(t);
        rd(x);
        rd_tuple<N + 1>(t);
    }
}
template <class... T> void rd(tuple<T...> &tpl) {
    rd_tuple(tpl);
}

template <size_t N = 0, typename T> void rd(array<T, N> &x) {
    for (auto &d : x)
        rd(d);
}
template <class T> void rd(vector<T> &x) {
    for (auto &d : x)
        rd(d);
}

void read() {}
template <class H, class... T> void read(H &h, T &...t) {
    rd(h), read(t...);
}

void wt(const char c) {
    if (por == SZ)
        flush();
    obuf[por++] = c;
}
void wt(const string s) {
    for (char c : s)
        wt(c);
}
void wt(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++)
        wt(s[i]);
}

template <typename T> void wt_integer(T x) {
    if (por > SZ - 100)
        flush();
    if (x < 0) {
        obuf[por++] = '-', x = -x;
    }
    int outi;
    for (outi = 96; x >= 10000; outi -= 4) {
        memcpy(out + outi, pre.num[x % 10000], 4);
        x /= 10000;
    }
    if (x >= 1000) {
        memcpy(obuf + por, pre.num[x], 4);
        por += 4;
    } else if (x >= 100) {
        memcpy(obuf + por, pre.num[x] + 1, 3);
        por += 3;
    } else if (x >= 10) {
        int q = (x * 103) >> 10;
        obuf[por] = q | '0';
        obuf[por + 1] = (x - q * 10) | '0';
        por += 2;
    } else
        obuf[por++] = x | '0';
    memcpy(obuf + por, out + outi + 4, 96 - outi);
    por += 96 - outi;
}

template <typename T> void wt_real(T x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << double(x);
    string s = oss.str();
    wt(s);
}

void wt(int x) {
    wt_integer(x);
}
void wt(ll x) {
    wt_integer(x);
}
void wt(i128 x) {
    wt_integer(x);
}
void wt(uint x) {
    wt_integer(x);
}
void wt(ull x) {
    wt_integer(x);
}
void wt(u128 x) {
    wt_integer(x);
}
void wt(double x) {
    wt_real(x);
}
void wt(long double x) {
    wt_real(x);
}

template <class T, class U> void wt(const pair<T, U> val) {
    wt(val.first);
    wt(' ');
    wt(val.second);
}
template <size_t N = 0, typename T> void wt_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
        if constexpr (N > 0) {
            wt(' ');
        }
        const auto x = std::get<N>(t);
        wt(x);
        wt_tuple<N + 1>(t);
    }
}
template <class... T> void wt(tuple<T...> tpl) {
    wt_tuple(tpl);
}
template <class T, size_t S> void wt(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i)
            wt(' ');
        wt(val[i]);
    }
}
template <class T> void wt(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i)
            wt(' ');
        wt(val[i]);
    }
}

void print() {
    wt('\n');
}
template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {
    wt(head);
    if (sizeof...(Tail))
        wt(' ');
    print(forward<Tail>(tail)...);
}
void __attribute__((destructor)) _d() {
    flush();
}
} // namespace fastio

using fastio::flush;
using fastio::print;
using fastio::read;

inline void first(bool i = true) {
    print(i ? "first" : "second");
}
inline void Alice(bool i = true) {
    print(i ? "Alice" : "Bob");
}
inline void Takahashi(bool i = true) {
    print(i ? "Takahashi" : "Aoki");
}
inline void yes(bool i = true) {
    print(i ? "yes" : "no");
}
inline void Yes(bool i = true) {
    print(i ? "Yes" : "No");
}
inline void No() {
    print("No");
}
inline void YES(bool i = true) {
    print(i ? "YES" : "NO");
}
inline void NO() {
    print("NO");
}
inline void Yay(bool i = true) {
    print(i ? "Yay!" : ":(");
}
inline void Possible(bool i = true) {
    print(i ? "Possible" : "Impossible");
}
inline void POSSIBLE(bool i = true) {
    print(i ? "POSSIBLE" : "IMPOSSIBLE");
}

/**
 * @brief Fast IO
 */
#line 3 "sol.cpp"

#line 2 "library/Math/fastdiv.hpp"

struct FastDiv{
    using u64=uint64_t;
    using u128=__uint128_t;
    constexpr FastDiv():m(),s(),x(){}
    constexpr FastDiv(int _m)
        :m(_m),s(__lg(m-1)),x(((u128(1)<<(s+64))+m-1)/m){}
    constexpr int get(){return m;}
    constexpr friend u64 operator/(u64 n,const FastDiv& d){
        return (u128(n)*d.x>>d.s)>>64;
    }
    constexpr friend int operator%(u64 n,const FastDiv& d){
        return n-n/d*d.m;
    }
    constexpr pair<u64,int> divmod(u64 n)const{
        u64 q=n/(*this);
        return {q,n-q*m};
    }
    int m,s; u64 x;
};

/**
 * @brief Fast Division
*/
#line 2 "library/Math/miller.hpp"

struct m64 {
    using i64 = int64_t;
    using u64 = uint64_t;
    using u128 = __uint128_t;

    static u64 mod;
    static u64 r;
    static u64 n2;

    static u64 get_r() {
        u64 ret = mod;
        rep(_,0,5) ret *= 2 - mod * ret;
        return ret;
    }

    static void set_mod(u64 m) {
        assert(m < (1LL << 62));
        assert((m & 1) == 1);
        mod = m;
        n2 = -u128(m) % m;
        r = get_r();
        assert(r * mod == 1);
    }
    static u64 get_mod() { return mod; }

    u64 a;
    m64() : a(0) {}
    m64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){};

    static u64 reduce(const u128 &b) {
        return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
    }
    u64 get() const {
        u64 ret = reduce(a);
        return ret >= mod ? ret - mod : ret;
    }
    m64 &operator*=(const m64 &b) {
        a = reduce(u128(a) * b.a);
        return *this;
    }
    m64 operator*(const m64 &b) const { return m64(*this) *= b; }
    bool operator==(const m64 &b) const {
        return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
    }
    bool operator!=(const m64 &b) const {
        return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
    }
    m64 pow(u128 n) const {
        m64 ret(1), mul(*this);
        while (n > 0) {
        if (n & 1) ret *= mul;
        mul *= mul;
        n >>= 1;
        }
        return ret;
    }
};
typename m64::u64 m64::mod, m64::r, m64::n2;

bool Miller(ll n){
    if(n<2 or (n&1)==0)return (n==2);
    m64::set_mod(n);
    ll d=n-1; while((d&1)==0)d>>=1;
    vector<ll> seeds;
    if(n<(1<<30))seeds={2, 7, 61};
    else seeds={2, 325, 9375, 28178, 450775, 9780504};
    for(auto& x:seeds){
        if(n<=x)break;
        ll t=d;
        m64 y=m64(x).pow(t);
        while(t!=n-1 and y!=1 and y!=n-1){
            y*=y;
            t<<=1;
        }
        if(y!=n-1 and (t&1)==0)return 0;
    } return 1;
}

/**
 * @brief Miller-Rabin
 */
#line 2 "library/Utility/random.hpp"

namespace Random {
mt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count());
using u64 = unsigned long long;
u64 get() {
    return randgen();
}
template <typename T> T get(T L) { // [0,L]
    return get() % (L + 1);
}
template <typename T> T get(T L, T R) { // [L,R]
    return get(R - L) + L;
}
double uniform() {
    return double(get(1000000000)) / 1000000000;
}
string str(int n) {
    string ret;
    rep(i, 0, n) ret += get('a', 'z');
    return ret;
}
template <typename Iter> void shuffle(Iter first, Iter last) {
    if (first == last)
        return;
    int len = 1;
    for (auto it = first + 1; it != last; it++) {
        len++;
        int j = get(0, len - 1);
        if (j != len - 1)
            iter_swap(it, first + j);
    }
}
template <typename T> vector<T> select(int n, T L, T R) { // [L,R]
    if (n * 2 >= R - L + 1) {
        vector<T> ret(R - L + 1);
        iota(ALL(ret), L);
        shuffle(ALL(ret));
        ret.resize(n);
        return ret;
    } else {
        unordered_set<T> used;
        vector<T> ret;
        while (SZ(used) < n) {
            T x = get(L, R);
            if (!used.count(x)) {
                used.insert(x);
                ret.push_back(x);
            }
        }
        return ret;
    }
}

void relabel(int n, vector<pair<int, int>> &es) {
    shuffle(ALL(es));
    vector<int> ord(n);
    iota(ALL(ord), 0);
    shuffle(ALL(ord));
    for (auto &[u, v] : es)
        u = ord[u], v = ord[v];
}
template <bool directed, bool simple> vector<pair<int, int>> genGraph(int n) {
    vector<pair<int, int>> cand, es;
    rep(u, 0, n) rep(v, 0, n) {
        if (simple and u == v)
            continue;
        if (!directed and u > v)
            continue;
        cand.push_back({u, v});
    }
    int m = get(SZ(cand));
    vector<int> ord;
    if (simple)
        ord = select(m, 0, SZ(cand) - 1);
    else {
        rep(_, 0, m) ord.push_back(get(SZ(cand) - 1));
    }
    for (auto &i : ord)
        es.push_back(cand[i]);
    relabel(n, es);
    return es;
}
vector<pair<int, int>> genTree(int n) {
    vector<pair<int, int>> es;
    rep(i, 1, n) es.push_back({get(i - 1), i});
    relabel(n, es);
    return es;
}
}; // namespace Random

/**
 * @brief Random
 */
#line 4 "library/Math/pollard.hpp"

vector<ll> Pollard(ll n) {
    if (n <= 1)
        return {};
    if (Miller(n))
        return {n};
    if ((n & 1) == 0) {
        vector<ll> v = Pollard(n >> 1);
        v.push_back(2);
        return v;
    }
    for (ll x = 2, y = 2, d;;) {
        ll c = Random::get(2LL, n - 1);
        do {
            x = (__int128_t(x) * x + c) % n;
            y = (__int128_t(y) * y + c) % n;
            y = (__int128_t(y) * y + c) % n;
            d = __gcd(x - y + n, n);
        } while (d == 1);
        if (d < n) {
            vector<ll> lb = Pollard(d), rb = Pollard(n / d);
            lb.insert(lb.end(), ALL(rb));
            return lb;
        }
    }
}

/**
 * @brief Pollard-Rho
 */
#line 4 "library/Math/primitive.hpp"

ll mpow(ll a, ll t, ll m) {
    ll res = 1;
    FastDiv im(m);
    while (t) {
        if (t & 1)
            res = __int128_t(res) * a % im;
        a = __int128_t(a) * a % im;
        t >>= 1;
    }
    return res;
}
ll minv(ll a, ll m) {
    ll b = m, u = 1, v = 0;
    while (b) {
        ll t = a / b;
        a -= t * b;
        swap(a, b);
        u -= t * v;
        swap(u, v);
    }
    u = (u % m + m) % m;
    return u;
}
ll getPrimitiveRoot(ll p) {
    vector<ll> ps = Pollard(p - 1);
    sort(ALL(ps));
    rep(x, 1, inf) {
        for (auto &q : ps) {
            if (mpow(x, (p - 1) / q, p) == 1)
                goto fail;
        }
        return x;
    fail:;
    }
    assert(0);
}
ll extgcd(ll a, ll b, ll &p, ll &q) {
    if (b == 0) {
        p = 1;
        q = 0;
        return a;
    }
    ll d = extgcd(b, a % b, q, p);
    q -= a / b * p;
    return d;
}
pair<ll, ll> crt(const vector<ll> &vs, const vector<ll> &ms) {
    ll V = vs[0], M = ms[0];
    rep(i, 1, vs.size()) {
        ll p, q, v = vs[i], m = ms[i];
        if (M < m)
            swap(M, m), swap(V, v);
        ll d = extgcd(M, m, p, q);
        if ((v - V) % d != 0)
            return {0, -1};
        ll md = m / d, tmp = (v - V) / d % md * p % md;
        V += M * tmp;
        M *= md;
    }
    V = (V % M + M) % M;
    return {V, M};
}
ll ModLog(ll a, ll b, ll p) {
    ll g = 1;
    for (ll t = p; t; t >>= 1)
        g = g * a % p;
    g = __gcd(g, p);
    ll t = 1, c = 0;
    for (; t % g; c++) {
        if (t == b)
            return c;
        t = t * a % p;
    }
    if (b % g)
        return -1;
    t /= g, b /= g;
    ll n = p / g, h = 0, gs = 1;
    for (; h * h < n; h++)
        gs = gs * a % n;
    unordered_map<ll, ll> bs;
    for (ll s = 0, e = b; s < h; bs[e] = ++s)
        e = e * a % n;
    for (ll s = 0, e = t; s < n;) {
        e = e * gs % n, s += h;
        if (bs.count(e)) {
            return c + s - bs[e];
        }
    }
    return -1;
}

ll mod_root(ll k, ll a, ll m) {
    if (a == 0)
        return k ? 0 : -1;
    if (m == 2)
        return a & 1;
    k %= m - 1;
    ll g = gcd(k, m - 1);
    if (mpow(a, (m - 1) / g, m) != 1)
        return -1;
    a = mpow(a, minv(k / g, (m - 1) / g), m);
    FastDiv im(m);

    auto _subroot = [&](ll p, int e, ll a) -> ll { // x^(p^e)==a(mod m)
        ll q = m - 1;
        int s = 0;
        while (q % p == 0) {
            q /= p;
            s++;
        }
        int d = s - e;
        ll pe = mpow(p, e, m),
           res = mpow(a, ((pe - 1) * minv(q, pe) % pe * q + 1) / pe, m), c = 1;
        while (mpow(c, (m - 1) / p, m) == 1)
            c++;
        c = mpow(c, q, m);
        map<ll, ll> mp;
        ll v = 1, block = sqrt(d * p) + 1,
           bs = mpow(c, mpow(p, s - 1, m - 1) * block % (m - 1), m);
        rep(i, 0, block + 1) mp[v] = i, v = v * bs % im;
        ll gs = minv(mpow(c, mpow(p, s - 1, m - 1), m), m);
        rep(i, 0, d) {
            ll err = a * minv(mpow(res, pe, m), m) % im;
            ll pos = mpow(err, mpow(p, d - 1 - i, m - 1), m);
            rep(j, 0, block + 1) {
                if (mp.count(pos)) {
                    res = res *
                          mpow(c,
                               (block * mp[pos] + j) * mpow(p, i, m - 1) %
                                   (m - 1),
                               m) %
                          im;
                    break;
                }
                pos = pos * gs % im;
            }
        }
        return res;
    };

    for (ll d = 2; d * d <= g; d++)
        if (g % d == 0) {
            int sz = 0;
            while (g % d == 0) {
                g /= d;
                sz++;
            }
            a = _subroot(d, sz, a);
        }
    if (g > 1)
        a = _subroot(g, 1, a);
    return a;
}

ull floor_root(ull a, ull k) {
    if (a <= 1 or k == 1)
        return a;
    if (k >= 64)
        return 1;
    if (k == 2)
        return sqrtl(a);
    constexpr ull LIM = -1;
    if (a == LIM)
        a--;
    auto mul = [&](ull &x, const ull &y) {
        if (x <= LIM / y)
            x *= y;
        else
            x = LIM;
    };
    auto pw = [&](ull x, ull t) -> ull {
        ull y = 1;
        while (t) {
            if (t & 1)
                mul(y, x);
            mul(x, x);
            t >>= 1;
        }
        return y;
    };
    ull ret = (k == 3 ? cbrt(a) - 1 : pow(a, nextafter(1 / double(k), 0)));
    while (pw(ret + 1, k) <= a)
        ret++;
    return ret;
}

/**
 * @brief Primitive Function
 */
#line 6 "sol.cpp"

ll phi(ll x) {
    auto ps = Pollard(x);
    UNIQUE(ps);
    ll ret = x;
    for (auto &p : ps) {
        ret /= p;
        ret *= p - 1;
    }
    return ret;
}

void solve(int _rot) {
    // print("Case #"+to_string(_rot)+":");
    ll B, N, M;
    read(B, N, M);

    ll n = N + 1;
    ll Bn = 1, BnN = 1;
    rep(_, 0, n) Bn *= B;
    rep(_, 0, n + N) BnN *= B;
    ll mpw = mpow(M, Bn, BnN);
    if (mpw % Bn != 1) {
        print(-1);
        return;
    }
    ll a = (mpw - 1) / Bn;
    print(a);
}

int main() {
    int t;
    read(t);
    rep(rot, 0, t) solve(rot + 1);
    return 0;
}
0