結果

問題 No.2993 冪乗乗 mod 冪乗
ユーザー ecotteaecottea
提出日時 2024-12-18 02:44:08
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 11,762 bytes
コンパイル時間 12,661 ms
コンパイル使用メモリ 472,800 KB
実行使用メモリ 7,544 KB
最終ジャッジ日時 2024-12-18 02:45:17
合計ジャッジ時間 68,281 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
7,280 KB
testcase_01 AC 9 ms
7,432 KB
testcase_02 AC 11 ms
7,344 KB
testcase_03 AC 10 ms
7,388 KB
testcase_04 AC 9 ms
7,340 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 21 ms
7,296 KB
testcase_10 AC 3,195 ms
7,424 KB
testcase_11 AC 5,262 ms
7,424 KB
testcase_12 AC 3,282 ms
7,392 KB
testcase_13 AC 5,070 ms
7,296 KB
testcase_14 AC 4,729 ms
7,440 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 AC 5,122 ms
7,424 KB
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 AC 4,363 ms
7,344 KB
testcase_25 WA -
testcase_26 AC 4,846 ms
7,296 KB
testcase_27 AC 4,894 ms
7,296 KB
testcase_28 WA -
testcase_29 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// QCFium
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9e18int -2^31 2^31 = 2e9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<1000000007>;
//using mint = modint; // mint::set_mod(m);
string mint_to_frac(mint x, int v_max = 31595) {
repi(dnm, 1, v_max) {
int num = (x * dnm).val();
if (num == 0) {
return "0";
}
if (num <= v_max) {
if (dnm == 1) return to_string(num);
return to_string(num) + "/" + to_string(dnm);
}
if (mint::mod() - num <= v_max) {
if (dnm == 1) return "-" + to_string(mint::mod() - num);
return "-" + to_string(mint::mod() - num) + "/" + to_string(dnm);
}
}
return to_string(x.val());
}
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
#ifdef _MSC_VER
inline ostream& operator<<(ostream& os, const mint& x) { os << mint_to_frac(x); return os; }
#else
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
#endif
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
//
/*
* Osa_k(int n) : O(n log(log n))
* n
*
* bool primeQ(int i) : O(1)
* i
*
* map<int, int> factor_integer(int i) : O(log n)
* i
*
* vi divisors(int i) : O(σ(n))
* i
*
* int euler_phi(int i) : O(log n)
* φ(i)
*
* vi unique_prime_factors(int i) : O(log n)
* i
*
* int radical(int i) : O(log n)
* i
*
* vi prime_power_decomposition(int i) : O(log n)
* i
*/
struct Osa_k {
int n;
// gpf[i] : i
vi gpf;
// n
Osa_k(int n_) : n(n_), gpf(n + 1) {
// verify : https://yukicoder.me/problems/no/2207
iota(all(gpf), 0);
for (int p = 2; p * p <= n; p++) {
if (gpf[p] != p) continue;
// d p^2
for (int i = p; i <= n; i += p) gpf[i] = p;
}
}
Osa_k() : n(0) {}
// i
bool primeQ(int i) {
// verify : https://yukicoder.me/problems/no/1396
Assert(i <= n);
return i >= 2 && gpf[i] == i;
}
// i
map<int, int> factor_integer(int i) const {
// verify : https://yukicoder.me/problems/no/2207
Assert(i <= n);
map<int, int> pps;
while (i > 1) {
pps[gpf[i]]++;
i /= gpf[i];
}
return pps;
}
// i
vi divisors(int i) const {
// verify : https://atcoder.jp/contests/abc368/tasks/abc368_f
Assert(i <= n);
vi divs{ 1 };
auto pps = factor_integer(i);
for (auto [p, d] : pps) {
vi powp(d);
powp[0] = p;
rep(i, d - 1) powp[i + 1] = powp[i] * p;
int m = sz(divs);
repir(j, m - 1, 0) rep(i, d) divs.push_back(divs[j] * powp[i]);
}
sort(all(divs)); //
return divs;
}
// φ(i)
int euler_phi(int i) {
// verify : https://yukicoder.me/problems/no/2849
Assert(i <= n);
int phi = 1; int pp = INF;
while (i > 1) {
int p = gpf[i];
phi *= (p == pp ? p : p - 1);
pp = p;
i /= p;
}
return phi;
}
// i
vi unique_prime_factors(int i) const {
Assert(i <= n);
vi res; int pp = INF;
while (i > 1) {
int p = gpf[i];
if (p != pp) res.push_back(p);
pp = p;
i /= p;
}
return res;
}
// i
int radical(int i) const {
// verify : https://projecteuler.net/problem=518
Assert(i <= n);
int rad = 1; int pp = INF;
while (i > 1) {
int p = gpf[i];
if (p != pp) rad *= p;
pp = p;
i /= p;
}
return rad;
}
// i
vi prime_power_decomposition(int i) const {
// verify : https://projecteuler.net/problem=407
Assert(i <= n);
vi res; int pp = INF;
while (i > 1) {
int p = gpf[i];
if (p != pp) res.push_back(p);
else res.back() *= p;
pp = p;
i /= p;
}
return res;
}
};
Osa_k O((int)1e6);
#include <boost/multiprecision/cpp_int.hpp>
using Bint = boost::multiprecision::cpp_int;
//O(log n)
Bint pow_bint_mod(const Bint& x, Bint n, Bint MOD) {
Bint res(1), pow2 = x;
while (n > 0) {
if (n & 1) {
res *= pow2;
res %= MOD;
}
pow2 *= pow2;
pow2 %= MOD;
n /= 2;
}
return res;
}
// 13 AC, 15 WA, 2 TLE
void WA() {
int B, N; ll M;
cin >> B >> N >> M;
int r = O.radical(B);
if ((M - 1) % r) {
cout << -1 << "\n";
return;
}
ll MOD = powi(B, N);
repi(n, 0, 10) {
Bint Bn = 1;
rep(hoge, n) Bn *= B;
ll a = (ll)((pow_bint_mod(M, Bn, MOD * Bn) + MOD * Bn - 1) % (MOD * Bn) / Bn);
if (n == N) dump("- - -");
dump("n:", n, "a:", a);
}
Bint Bn = Bint(MOD) * B * B * B * B * B;
Bint MMOD = MOD * Bn;
ll a = (ll)((pow_bint_mod(M, Bn, MMOD) + MMOD - 1) % MMOD / Bn);
//
cout << a << "\n";
}
//O(log n)
__int128 pow_128_mod(const __int128& x, __int128 n, __int128 MOD) {
__int128 res(1), pow2 = x;
while (n > 0) {
if (n & 1) {
res *= pow2;
res %= MOD;
}
pow2 *= pow2;
pow2 %= MOD;
n /= 2;
}
return res;
}
// 15 AC, 15 WA
void WA2() {
ll B, N, M;
cin >> B >> N >> M;
int r = O.radical((int)B);
if ((M - 1) % r) {
cout << -1 << "\n";
return;
}
ll MOD = powi(B, (int)N);
ll a1, a2, a3;
{
__int128 Bn = MOD;
a1 = (ll)((pow_128_mod(M, Bn, MOD * Bn) - 1) / Bn);
}
{
Bint Bn = Bint(MOD) * B;
a2 = (ll)((pow_bint_mod(M, Bn, MOD * Bn) - 1) / Bn);
}
{
Bint Bn = Bint(MOD) * (B * B);
a3 = (ll)((pow_bint_mod(M, Bn, MOD * Bn) - 1) / Bn);
}
ll a = (a1 == a2 || a1 == a3) ? a1 : a2;
// 3 調
cout << a << "\n";
}
void Main() {
ll B, N, M;
cin >> B >> N >> M;
int r = O.radical((int)B);
if ((M - 1) % r) {
cout << -1 << "\n";
return;
}
ll MOD = powi(B, (int)N);
// 415[ms]
Bint Bn = MOD;
while (Bn * B < (Bint)1e18) Bn *= B;
ll a = (ll)((pow_bint_mod(M, Bn, MOD * Bn) - 1) / Bn);
cout << a << "\n";
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int t = 1;
cin >> t; //
while (t--) {
dump("------------------------------");
Main();
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0