結果

問題 No.2780 The Bottle Imp
ユーザー cutmdocutmdo
提出日時 2024-12-18 22:47:37
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 17,796 bytes
コンパイル時間 2,970 ms
コンパイル使用メモリ 187,240 KB
実行使用メモリ 26,240 KB
最終ジャッジ日時 2024-12-18 22:47:45
合計ジャッジ時間 7,717 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 3 ms
6,816 KB
testcase_07 AC 49 ms
11,392 KB
testcase_08 AC 48 ms
11,392 KB
testcase_09 AC 48 ms
11,520 KB
testcase_10 AC 57 ms
11,392 KB
testcase_11 AC 53 ms
11,392 KB
testcase_12 AC 90 ms
17,640 KB
testcase_13 AC 87 ms
17,628 KB
testcase_14 AC 29 ms
10,880 KB
testcase_15 AC 27 ms
10,880 KB
testcase_16 AC 27 ms
11,008 KB
testcase_17 AC 26 ms
11,008 KB
testcase_18 AC 26 ms
10,880 KB
testcase_19 AC 27 ms
11,008 KB
testcase_20 AC 25 ms
10,880 KB
testcase_21 AC 25 ms
10,880 KB
testcase_22 AC 19 ms
6,824 KB
testcase_23 AC 22 ms
9,472 KB
testcase_24 AC 38 ms
10,112 KB
testcase_25 AC 68 ms
14,576 KB
testcase_26 AC 32 ms
10,624 KB
testcase_27 AC 23 ms
11,284 KB
testcase_28 AC 22 ms
11,412 KB
testcase_29 WA -
testcase_30 AC 24 ms
9,396 KB
testcase_31 AC 35 ms
15,192 KB
testcase_32 AC 16 ms
9,472 KB
testcase_33 AC 47 ms
24,356 KB
testcase_34 AC 72 ms
26,240 KB
testcase_35 AC 13 ms
7,936 KB
testcase_36 WA -
testcase_37 WA -
testcase_38 AC 12 ms
7,808 KB
testcase_39 AC 36 ms
16,276 KB
testcase_40 AC 36 ms
16,400 KB
testcase_41 WA -
testcase_42 AC 2 ms
6,816 KB
testcase_43 AC 2 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <vector>
#define PROBLEM "https://yukicoder.me/problems/no/2780"
#include <iostream>

#include <set>
#include <tuple>
#include <ranges>
#include <vector>
#include <algorithm>
#include <unordered_set>
#include <iostream>
#include <deque>
#include <functional>
namespace mtd {  template <class Node = int, class Cost = long long>  class Graph {            using Edge = std::pair<Node, Cost>;    using Edges = std::vector<Edge>;    const int m_n;    std::vector<Edges> m_graph;  public:    Graph(int n) : m_n(n), m_graph(n) {}    Graph(const std::vector<Edges>& edges)        : m_n(edges.size()), m_graph(edges) {}    auto addEdge(const Node& f, const Node& t, const Cost& c = 1) {      m_graph[f].emplace_back(t, c);    }    auto addEdgeUndirected(const Node& f, const Node& t, const Cost& c = 1) {      addEdge(f, t, c);      addEdge(t, f, c);    }    auto getEdges(const Node& from) const {      class EdgesRange {        const typename Edges::const_iterator b, e;      public:        EdgesRange(const Edges& edges) : b(edges.begin()), e(edges.end()) {}        auto begin() const { return b; }        auto end() const { return e; }      };      return EdgesRange(m_graph[from]);    }    auto getEdges() const {      std::deque<std::tuple<Node, Node, Cost>> edges;      for (Node from : std::views::iota(0, m_n)) {        for (const auto& [to, c] : getEdges(from)) {          edges.emplace_back(from, to, c);        }      }      return edges;    }    auto getEdgesExcludeCost() const {      std::deque<std::pair<Node, Node>> edges;      for (Node from : std::views::iota(0, m_n)) {        for (const auto& [to, _] : getEdges(from)) {          edges.emplace_back(from, to);        }      }      return edges;    }    auto reverse() const {      auto rev = Graph<Node, Cost>(m_n);      for (const auto& [from, to, c] : getEdges()) { rev.addEdge(to, from, c); }      return rev;    }    auto size() const { return m_n; };    auto debug(bool directed = false) const {      for (const auto& [f, t, c] : getEdges()) {        if (f < t || directed) {          std::cout << f << " -> " << t << ": " << c << std::endl;        }      }    }  };}  
namespace mtd {  namespace util {    template <class F, class T>    constexpr auto tuple_transform(F&& f, T&& t) {      return std::apply(          [&]<class... Ts>(Ts&&... elems) {            return std::tuple<std::invoke_result_t<F&, Ts>...>(                std::invoke(f, std::forward<Ts>(elems))...);          },          std::forward<T>(t));    }    template <class F, class T>    constexpr auto tuple_for_each(F&& f, T&& t) {      std::apply(          [&]<class... Ts>(Ts&&... elems) {            (std::invoke(f, std::forward<Ts>(elems)), ...);          },          std::forward<T>(t));    }  }  }  
namespace mtd {  template <class Node, class Cost>  class StronglyConnectedComponents {    struct HashPair {      template <class T1, class T2>      size_t operator()(const std::pair<T1, T2>& p) const {        auto hash1 = std::hash<T1>{}(p.first);        auto hash2 = std::hash<T2>{}(p.second);        size_t seed = 0;        seed ^= hash1 + 0x9e3779b9 + (seed << 6) + (seed >> 2);        seed ^= hash2 + 0x9e3779b9 + (seed << 6) + (seed >> 2);        return seed;      }    };    const Graph<Node, Cost> m_graph;    const std::vector<int> m_group;    template <class F>    constexpr static inline auto dfs(const Graph<Node, Cost>& graph, int from,                                     std::vector<bool>& is_used, const F& f)        -> void {      is_used[from] = true;      for (const auto& [to, _] : graph.getEdges(from)) {        if (is_used[to]) { continue; }        dfs(graph, to, is_used, f);      }      f(from);    }    constexpr static auto constructGroup(const Graph<Node, Cost>& graph) {      int n = graph.size();      std::vector<Node> order;      std::vector<bool> is_used(n);      for (auto from : std::views::iota(0, n)) {        if (is_used[from]) { continue; }        dfs(graph, from, is_used, [&](int f) { order.emplace_back(f); });      }      int g = 0;      std::vector<Node> group(n);      std::vector<bool> is_used2(n);      auto rev = graph.reverse();      for (auto from : order | std::views::reverse) {        if (is_used2[from]) { continue; }        dfs(rev, from, is_used2, [&](int f) { group[f] = g; });        ++g;      }      return group;    }  public:    [[deprecated]] constexpr StronglyConnectedComponents(        const Graph<Node, Cost>& graph)        : m_graph(graph), m_group(constructGroup(m_graph)) {}        constexpr StronglyConnectedComponents(Graph<Node, Cost>&& graph)        : m_graph(std::move(graph)), m_group(constructGroup(m_graph)) {}    constexpr auto size() const {      return *std::max_element(m_group.begin(), m_group.end()) + 1;    }    constexpr auto group(int a) const { return m_group[a]; }    constexpr auto isSameGroup(int a, int b) const {      return m_group[a] == m_group[b];    }    constexpr auto getGroupNodes() const {      std::vector<std::vector<int>> groupNodes(size());      for (int gi = 0; gi < m_graph.size(); ++gi) {        groupNodes[m_group[gi]].emplace_back(gi);      }      return groupNodes;    }    constexpr auto getGroupGraph() const {      std::unordered_set<std::pair<int, int>, HashPair> st;      st.reserve(m_graph.size());      for (int f = 0; f < m_graph.size(); ++f) {        for (const auto& [t, _] : m_graph.getEdges(f)) {          if (!isSameGroup(f, t)) { st.emplace(m_group[f], m_group[t]); }        }      }      Graph<Node, Cost> ret(size());      for (const auto& [f, t] : st) { ret.addEdge(f, t); }      return ret;    }  };}  
namespace mtd {  namespace ranges {    namespace __detail {      template <typename... T>      concept __all_random_access = (std::ranges::random_access_range<T> &&                                     ...);      template <typename... T>      concept __all_bidirectional = (std::ranges::bidirectional_range<T> &&                                     ...);      template <typename... T>      concept __all_forward = (std::ranges::forward_range<T> && ...);      template <class... T>      constexpr auto _S_iter_concept() {        if constexpr (__all_random_access<T...>) {          return std::random_access_iterator_tag{};        } else if constexpr (__all_bidirectional<T...>) {          return std::bidirectional_iterator_tag{};        } else if constexpr (__all_forward<T...>) {          return std::forward_iterator_tag{};        } else {          return std::input_iterator_tag{};        }      }    }      template <std::ranges::range... _Range>    struct zip_view : public std::ranges::view_interface<zip_view<_Range...>> {      class iterator {      public:        std::tuple<std::ranges::iterator_t<_Range>...> _M_current;        using difference_type = int;        using value_type = std::tuple<            std::iter_reference_t<std::ranges::iterator_t<_Range>>...>;        using iterator_concept =            decltype(__detail::_S_iter_concept<_Range...>());        constexpr iterator() = default;        constexpr explicit iterator(const decltype(_M_current)& __current)            : _M_current(__current) {}        constexpr auto operator*() const {          return util::tuple_transform([](auto& __i) { return *__i; },                                       _M_current);        }        constexpr auto& operator++() {          util::tuple_for_each([](auto& __i) { ++__i; }, _M_current);          return *this;        }        constexpr auto operator++(int) { return ++*this; }        constexpr auto operator==(const iterator& other) const {          return [&]<size_t... _Is>(std::index_sequence<_Is...>) {            return ((std::get<_Is>(_M_current) ==                     std::get<_Is>(other._M_current)) ||                    ...);          }          (std::make_index_sequence<sizeof...(_Range)>{});        }        constexpr auto& operator--() requires            __detail::__all_bidirectional<_Range...> {          util::tuple_for_each([](auto& __i) { --__i; }, _M_current);          return *this;        }        constexpr auto operator--(            int) requires __detail::__all_bidirectional<_Range...> {          return --*this;        }        constexpr auto operator<=>(const iterator&)            const requires __detail::__all_random_access<_Range...>        = default;        constexpr auto operator-(const iterator& itr)            const requires __detail::__all_random_access<_Range...> {          return [&]<size_t... _Is>(std::index_sequence<_Is...>) {            return std::ranges::min({difference_type(                std::get<_Is>(_M_current) - std::get<_Is>(itr._M_current))...});          }          (std::make_index_sequence<sizeof...(_Range)>{});        }        constexpr auto& operator+=(const difference_type n) requires            __detail::__all_random_access<_Range...> {          util::tuple_for_each([&n](auto& __i) { __i += n; }, _M_current);          return *this;        }        constexpr auto operator+(const difference_type n)            const requires __detail::__all_random_access<_Range...> {          auto __r = *this;          __r += n;          return __r;        }        constexpr friend auto operator+(const difference_type n,                                        const iterator& itr) requires            __detail::__all_random_access<_Range...> {          return itr + n;        }        constexpr auto& operator-=(const difference_type n) requires            __detail::__all_random_access<_Range...> {          util::tuple_for_each([&n](auto& __i) { __i -= n; }, _M_current);          return *this;        }        constexpr auto operator-(const difference_type n)            const requires __detail::__all_random_access<_Range...> {          auto __r = *this;          __r -= n;          return __r;        }        constexpr auto operator[](const difference_type n)            const requires __detail::__all_random_access<_Range...> {          return util::tuple_transform([&n](auto& __i) { return __i[n]; },                                       _M_current);        }      };      class sentinel {      public:        std::tuple<std::ranges::sentinel_t<_Range>...> _M_end;        constexpr sentinel() = default;        constexpr explicit sentinel(const decltype(_M_end)& __end)            : _M_end(__end) {}        friend constexpr bool operator==(const iterator& __x,                                         const sentinel& __y) {          return [&]<size_t... _Is>(std::index_sequence<_Is...>) {            return (                (std::get<_Is>(__x._M_current) == std::get<_Is>(__y._M_end)) ||                ...);          }          (std::make_index_sequence<sizeof...(_Range)>{});        }      };      std::tuple<_Range...> __r;      constexpr explicit zip_view(const _Range&... __r) : __r(__r...) {}      constexpr auto begin() {        return iterator(util::tuple_transform(std::ranges::begin, __r));      }      constexpr auto end() {        return sentinel(util::tuple_transform(std::ranges::end, __r));      }    };    namespace __detail {      template <typename T>      auto _flatten(const T& t) {        return std::make_tuple(t);      }      template <typename... T>      auto _flatten(const std::tuple<T...>& t);      template <typename Head, typename... Tail>      auto _flatten_impl(const Head& head, const Tail&... tail) {        return std::tuple_cat(_flatten(head), _flatten(tail)...);      }      template <typename... T>      auto _flatten(const std::tuple<T...>& t) {        return std::apply(            [](const auto&... args) { return _flatten_impl(args...); }, t);      }    }      template <std::ranges::range _Range>    struct flatten_view        : public std::ranges::view_interface<flatten_view<_Range>> {      class iterator {      public:        std::ranges::iterator_t<_Range> _M_current;        using difference_type = std::ranges::range_difference_t<_Range>;        using value_type = decltype(__detail::_flatten(            std::declval<                std::iter_reference_t<std::ranges::iterator_t<_Range>>>()));        using iterator_concept = decltype(__detail::_S_iter_concept<_Range>());        constexpr iterator() = default;        constexpr explicit iterator(decltype(_M_current) __current)            : _M_current(__current) {}        constexpr auto operator*() const {          return __detail::_flatten(*_M_current);        }        constexpr auto& operator++() {          ++_M_current;          return *this;        }        constexpr auto operator++(int) { return ++*this; }        constexpr auto operator==(const iterator& other) const {          return _M_current == other._M_current;        }        constexpr auto& operator--() requires            __detail::__all_bidirectional<_Range> {          --_M_current;          return *this;        }        constexpr auto operator--(            int) requires __detail::__all_bidirectional<_Range> {          return --*this;        }        constexpr auto operator<=>(const iterator&)            const requires __detail::__all_random_access<_Range>        = default;        constexpr auto operator-(const iterator& itr)            const requires __detail::__all_random_access<_Range> {          return _M_current - itr._M_current;        }        constexpr auto& operator+=(const difference_type n) requires            __detail::__all_random_access<_Range> {          _M_current += n;          return *this;        }        constexpr auto operator+(const difference_type n)            const requires __detail::__all_random_access<_Range> {          auto __r = *this;          __r += n;          return __r;        }        constexpr friend auto operator+(const difference_type n,                                        const iterator& itr) requires            __detail::__all_random_access<_Range> {          return itr + n;        }        constexpr auto& operator-=(const difference_type n) requires            __detail::__all_random_access<_Range> {          _M_current -= n;          return *this;        }        constexpr auto operator-(const difference_type n)            const requires __detail::__all_random_access<_Range> {          auto __r = *this;          __r -= n;          return __r;        }        constexpr auto operator[](const difference_type n)            const requires __detail::__all_random_access<_Range> {          return __detail::_flatten(_M_current[n]);        }      };      class sentinel {        std::ranges::sentinel_t<_Range> _M_end;      public:        constexpr sentinel() = default;        constexpr explicit sentinel(const decltype(_M_end)& __end)            : _M_end(__end) {}        friend constexpr bool operator==(const iterator& __x,                                         const sentinel& __y) {          return __x._M_current == __y._M_end;        }      };      _Range __r;      constexpr explicit flatten_view(const _Range& __r) : __r(__r) {}      constexpr auto begin() { return iterator(std::ranges::begin(__r)); }      constexpr auto end() { return sentinel(std::ranges::end(__r)); }    };  }    namespace views {    namespace __detail {      template <typename... _Args>      concept __can_zip_view = requires {        ranges::zip_view(std::declval<_Args>()...);      };      template <typename... _Args>      concept __can_flatten_view = requires {        ranges::flatten_view(std::declval<_Args>()...);      };    }      struct _ZipView {      template <class... _Tp>      requires __detail::__can_zip_view<_Tp...>      constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {        return ranges::zip_view(std::forward<_Tp>(__e)...);      }    };    struct _Enumerate : std::views::__adaptor::_RangeAdaptorClosure {      template <class _Tp>      requires __detail::__can_zip_view<std::ranges::iota_view<size_t>, _Tp>      constexpr auto operator() [[nodiscard]] (_Tp&& __e) const {        return ranges::zip_view{std::views::iota(0), std::forward<_Tp>(__e)};      }      static constexpr bool _S_has_simple_call_op = true;    };    struct _Flatten : std::views::__adaptor::_RangeAdaptorClosure {      template <class... _Tp>      requires __detail::__can_flatten_view<_Tp...>      constexpr auto operator() [[nodiscard]] (_Tp&&... __e) const {        return ranges::flatten_view(std::forward<_Tp>(__e)...);      }      static constexpr bool _S_has_simple_call_op = true;    };    inline constexpr _ZipView zip{};    inline constexpr _Enumerate enumerate{};    inline constexpr _Flatten flatten{};  }  }  
namespace mtd {  template <class Node, class Cost>  auto topological_order(const mtd::Graph<Node, Cost>& graph) {    std::vector<Node> cnt(graph.size());    for (auto [_, v] : graph.getEdgesExcludeCost()) { ++cnt[v]; }    std::deque<Node> q;    for (auto [nd, c] : cnt | mtd::views::enumerate) {      if (c == 0) { q.emplace_back(nd); }    }    std::vector<Node> order;    while (!q.empty()) {      auto nd = q.front();      q.pop_front();      order.emplace_back(nd);      for (auto [v, _] : graph.getEdges(nd)) {        --cnt[v];        if (cnt[v] == 0) { q.emplace_back(v); }      }    }    return order;  }}  

int main() {
  std::cin.tie(0);
  std::ios::sync_with_stdio(0);

  int n;
  std::cin >> n;
  auto graph = mtd::Graph<>(n);
  for (auto u : std::views::iota(0, n)) {
    int m;
    std::cin >> m;
    for ([[maybe_unused]] auto _ : std::views::iota(0, m)) {
      int v;
      std::cin >> v;
      graph.addEdge(u, v - 1);
    }
  }

  auto scc = mtd::StronglyConnectedComponents(std::move(graph));
  auto scc_graph = scc.getGroupGraph();
  auto size = scc.size();
  std::vector<int> dp(size);
  dp[scc.group(0)] = true;
  for (auto u : mtd::topological_order(scc_graph)) {
    for (auto [v, _] : scc_graph.getEdges(u)) { dp[v] |= dp[u]; }
  }

  auto yes = std::ranges::all_of(dp, [](int x) { return x; });
  std::cout << (yes ? "Yes" : "No") << std::endl;
}

0