結果
問題 | No.2995 The Ruler Sequence Concatenation |
ユーザー | tko919 |
提出日時 | 2024-12-20 04:22:55 |
言語 | C++23(gcc13) (gcc 13.2.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 9 ms / 1,000 ms |
コード長 | 42,582 bytes |
コンパイル時間 | 7,460 ms |
コンパイル使用メモリ | 331,332 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-12-20 04:23:04 |
合計ジャッジ時間 | 7,476 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 3 ms
6,824 KB |
testcase_05 | AC | 3 ms
6,816 KB |
testcase_06 | AC | 4 ms
6,820 KB |
testcase_07 | AC | 6 ms
6,820 KB |
testcase_08 | AC | 7 ms
6,820 KB |
testcase_09 | AC | 8 ms
6,820 KB |
testcase_10 | AC | 9 ms
6,816 KB |
ソースコード
#line 1 "library/Template/template.hpp" #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++) #define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--) #define ALL(v) (v).begin(), (v).end() #define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()) #define SZ(v) (int)v.size() #define MIN(v) *min_element(ALL(v)) #define MAX(v) *max_element(ALL(v)) #define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin()) #define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin()) using uint = unsigned int; using ll = long long int; using ull = unsigned long long; using i128 = __int128_t; using u128 = __uint128_t; const int inf = 0x3fffffff; const ll INF = 0x1fffffffffffffff; template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return 1; } return 0; } template <typename T, typename U> T ceil(T x, U y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T> int popcnt(T x) { return __builtin_popcountll(x); } template <typename T> int topbit(T x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } template <typename T> int lowbit(T x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { os << "P(" << p.first << ", " << p.second << ")"; return os; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << "{"; for (int i = 0; i < vec.size(); i++) { os << vec[i] << (i + 1 == vec.size() ? "" : ", "); } os << "}"; return os; } template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) { os << "{"; for (auto itr = map_var.begin(); itr != map_var.end(); itr++) { os << "(" << itr->first << ", " << itr->second << ")"; itr++; if (itr != map_var.end()) os << ", "; itr--; } os << "}"; return os; } template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { os << "{"; for (auto itr = set_var.begin(); itr != set_var.end(); itr++) { os << *itr; ++itr; if (itr != set_var.end()) os << ", "; itr--; } os << "}"; return os; } #ifdef LOCAL #define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__) #else #define show(...) true #endif template <typename T> void _show(int i, T name) { cerr << '\n'; } template <typename T1, typename T2, typename... T3> void _show(int i, const T1 &a, const T2 &b, const T3 &...c) { for (; a[i] != ',' && a[i] != '\0'; i++) cerr << a[i]; cerr << ":" << b << " "; _show(i + 1, a, c...); } #line 2 "library/Utility/fastio.hpp" #include <unistd.h> namespace fastio { static constexpr uint32_t SZ = 1 << 17; char ibuf[SZ]; char obuf[SZ]; char out[100]; // pointer of ibuf, obuf uint32_t pil = 0, pir = 0, por = 0; struct Pre { char num[10000][4]; constexpr Pre() : num() { for (int i = 0; i < 10000; i++) { int n = i; for (int j = 3; j >= 0; j--) { num[i][j] = n % 10 | '0'; n /= 10; } } } } constexpr pre; inline void load() { memmove(ibuf, ibuf + pil, pir - pil); pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin); pil = 0; if (pir < SZ) ibuf[pir++] = '\n'; } inline void flush() { fwrite(obuf, 1, por, stdout); por = 0; } void rd(char &c) { do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); } void rd(string &x) { x.clear(); char c; do { if (pil + 1 > pir) load(); c = ibuf[pil++]; } while (isspace(c)); do { x += c; if (pil == pir) load(); c = ibuf[pil++]; } while (!isspace(c)); } template <typename T> void rd_real(T &x) { string s; rd(s); x = stod(s); } template <typename T> void rd_integer(T &x) { if (pil + 100 > pir) load(); char c; do c = ibuf[pil++]; while (c < '-'); bool minus = 0; if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (c == '-') { minus = 1, c = ibuf[pil++]; } } x = 0; while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; } if constexpr (is_signed<T>::value || is_same_v<T, i128>) { if (minus) x = -x; } } void rd(int &x) { rd_integer(x); } void rd(ll &x) { rd_integer(x); } void rd(i128 &x) { rd_integer(x); } void rd(uint &x) { rd_integer(x); } void rd(ull &x) { rd_integer(x); } void rd(u128 &x) { rd_integer(x); } void rd(double &x) { rd_real(x); } void rd(long double &x) { rd_real(x); } template <class T, class U> void rd(pair<T, U> &p) { return rd(p.first), rd(p.second); } template <size_t N = 0, typename T> void rd_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); rd(x); rd_tuple<N + 1>(t); } } template <class... T> void rd(tuple<T...> &tpl) { rd_tuple(tpl); } template <size_t N = 0, typename T> void rd(array<T, N> &x) { for (auto &d : x) rd(d); } template <class T> void rd(vector<T> &x) { for (auto &d : x) rd(d); } void read() {} template <class H, class... T> void read(H &h, T &...t) { rd(h), read(t...); } void wt(const char c) { if (por == SZ) flush(); obuf[por++] = c; } void wt(const string s) { for (char c : s) wt(c); } void wt(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) wt(s[i]); } template <typename T> void wt_integer(T x) { if (por > SZ - 100) flush(); if (x < 0) { obuf[por++] = '-', x = -x; } int outi; for (outi = 96; x >= 10000; outi -= 4) { memcpy(out + outi, pre.num[x % 10000], 4); x /= 10000; } if (x >= 1000) { memcpy(obuf + por, pre.num[x], 4); por += 4; } else if (x >= 100) { memcpy(obuf + por, pre.num[x] + 1, 3); por += 3; } else if (x >= 10) { int q = (x * 103) >> 10; obuf[por] = q | '0'; obuf[por + 1] = (x - q * 10) | '0'; por += 2; } else obuf[por++] = x | '0'; memcpy(obuf + por, out + outi + 4, 96 - outi); por += 96 - outi; } template <typename T> void wt_real(T x) { ostringstream oss; oss << fixed << setprecision(15) << double(x); string s = oss.str(); wt(s); } void wt(int x) { wt_integer(x); } void wt(ll x) { wt_integer(x); } void wt(i128 x) { wt_integer(x); } void wt(uint x) { wt_integer(x); } void wt(ull x) { wt_integer(x); } void wt(u128 x) { wt_integer(x); } void wt(double x) { wt_real(x); } void wt(long double x) { wt_real(x); } template <class T, class U> void wt(const pair<T, U> val) { wt(val.first); wt(' '); wt(val.second); } template <size_t N = 0, typename T> void wt_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { wt(' '); } const auto x = std::get<N>(t); wt(x); wt_tuple<N + 1>(t); } } template <class... T> void wt(tuple<T...> tpl) { wt_tuple(tpl); } template <class T, size_t S> void wt(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } template <class T> void wt(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) wt(' '); wt(val[i]); } } void print() { wt('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) { wt(head); if (sizeof...(Tail)) wt(' '); print(forward<Tail>(tail)...); } void __attribute__((destructor)) _d() { flush(); } } // namespace fastio using fastio::flush; using fastio::print; using fastio::read; inline void first(bool i = true) { print(i ? "first" : "second"); } inline void Alice(bool i = true) { print(i ? "Alice" : "Bob"); } inline void Takahashi(bool i = true) { print(i ? "Takahashi" : "Aoki"); } inline void yes(bool i = true) { print(i ? "yes" : "no"); } inline void Yes(bool i = true) { print(i ? "Yes" : "No"); } inline void No() { print("No"); } inline void YES(bool i = true) { print(i ? "YES" : "NO"); } inline void NO() { print("NO"); } inline void Yay(bool i = true) { print(i ? "Yay!" : ":("); } inline void Possible(bool i = true) { print(i ? "Possible" : "Impossible"); } inline void POSSIBLE(bool i = true) { print(i ? "POSSIBLE" : "IMPOSSIBLE"); } /** * @brief Fast IO */ #line 3 "sol.cpp" #line 2 "library/Math/modint.hpp" template <unsigned mod = 1000000007> struct fp { unsigned v; static constexpr int get_mod() { return mod; } constexpr unsigned inv() const { assert(v != 0); int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0; while (y > 0) { t = x / y; x -= t * y, p -= t * q; tmp = x, x = y, y = tmp; tmp = p, p = q, q = tmp; } if (p < 0) p += mod; return p; } constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {} fp operator-() const { return fp() - *this; } fp pow(ull t) { fp res = 1, b = *this; while (t) { if (t & 1) res *= b; b *= b; t >>= 1; } return res; } fp &operator+=(const fp &x) { if ((v += x.v) >= mod) v -= mod; return *this; } fp &operator-=(const fp &x) { if ((v += mod - x.v) >= mod) v -= mod; return *this; } fp &operator*=(const fp &x) { v = ull(v) * x.v % mod; return *this; } fp &operator/=(const fp &x) { v = ull(v) * x.inv() % mod; return *this; } fp operator+(const fp &x) const { return fp(*this) += x; } fp operator-(const fp &x) const { return fp(*this) -= x; } fp operator*(const fp &x) const { return fp(*this) *= x; } fp operator/(const fp &x) const { return fp(*this) /= x; } bool operator==(const fp &x) const { return v == x.v; } bool operator!=(const fp &x) const { return v != x.v; } friend istream &operator>>(istream &is, fp &x) { return is >> x.v; } friend ostream &operator<<(ostream &os, const fp &x) { return os << x.v; } }; template <unsigned mod> void rd(fp<mod> &x) { fastio::rd(x.v); } template <unsigned mod> void wt(fp<mod> x) { fastio::wt(x.v); } /** * @brief Modint */ #line 2 "library/Math/comb.hpp" template <typename T> T Inv(ll n) { static int md; static vector<T> buf({0, 1}); if (md != T::get_mod()) { md = T::get_mod(); buf = vector<T>({0, 1}); } assert(n > 0); n %= md; while (SZ(buf) <= n) { int k = SZ(buf), q = (md + k - 1) / k; buf.push_back(buf[k * q - md] * q); } return buf[n]; } template <typename T> T Fact(ll n, bool inv = 0) { static int md; static vector<T> buf({1, 1}), ibuf({1, 1}); if (md != T::get_mod()) { md = T::get_mod(); buf = ibuf = vector<T>({1, 1}); } assert(n >= 0 and n < md); while (SZ(buf) <= n) { buf.push_back(buf.back() * SZ(buf)); ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf))); } return inv ? ibuf[n] : buf[n]; } template <typename T> T nPr(int n, int r, bool inv = 0) { if (n < 0 || n < r || r < 0) return 0; return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1); } template <typename T> T nCr(int n, int r, bool inv = 0) { if (n < 0 || n < r || r < 0) return 0; return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1); } // sum = n, r tuples template <typename T> T nHr(int n, int r, bool inv = 0) { return nCr<T>(n + r - 1, r - 1, inv); } // sum = n, a nonzero tuples and b tuples template <typename T> T choose(int n, int a, int b) { if (n == 0) return !a; return nCr<T>(n + b - 1, a + b - 1); } /** * @brief Combination */ #line 2 "library/Convolution/ntt.hpp" template <typename T> struct NTT { static constexpr int rank2 = __builtin_ctzll(T::get_mod() - 1); std::array<T, rank2 + 1> root; // root[i]^(2^i) == 1 std::array<T, rank2 + 1> iroot; // root[i] * iroot[i] == 1 std::array<T, std::max(0, rank2 - 2 + 1)> rate2; std::array<T, std::max(0, rank2 - 2 + 1)> irate2; std::array<T, std::max(0, rank2 - 3 + 1)> rate3; std::array<T, std::max(0, rank2 - 3 + 1)> irate3; NTT() { T g = 2; while (g.pow((T::get_mod() - 1) >> 1) == 1) { g += 1; } root[rank2] = g.pow((T::get_mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { T prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } } { T prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } } void ntt(std::vector<T> &a, bool type = 0) { int n = int(a.size()); int h = __builtin_ctzll((unsigned int)n); a.resize(1 << h); if (type) { int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len) { if (len == 1) { int p = 1 << (h - len); T irot = 1; for (int s = 0; s < (1 << (len - 1)); s++) { int offset = s << (h - len + 1); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p]; a[i + offset] = l + r; a[i + offset + p] = (unsigned long long)(T::get_mod() + l.v - r.v) * irot.v; ; } if (s + 1 != (1 << (len - 1))) irot *= irate2[__builtin_ctzll(~(unsigned int)(s))]; } len--; } else { // 4-base int p = 1 << (h - len); T irot = 1, iimag = iroot[2]; for (int s = 0; s < (1 << (len - 2)); s++) { T irot2 = irot * irot; T irot3 = irot2 * irot; int offset = s << (h - len + 2); for (int i = 0; i < p; i++) { auto a0 = 1ULL * a[i + offset + 0 * p].v; auto a1 = 1ULL * a[i + offset + 1 * p].v; auto a2 = 1ULL * a[i + offset + 2 * p].v; auto a3 = 1ULL * a[i + offset + 3 * p].v; auto a2na3iimag = 1ULL * T((T::get_mod() + a2 - a3) * iimag.v).v; a[i + offset] = a0 + a1 + a2 + a3; a[i + offset + 1 * p] = (a0 + (T::get_mod() - a1) + a2na3iimag) * irot.v; a[i + offset + 2 * p] = (a0 + a1 + (T::get_mod() - a2) + (T::get_mod() - a3)) * irot2.v; a[i + offset + 3 * p] = (a0 + (T::get_mod() - a1) + (T::get_mod() - a2na3iimag)) * irot3.v; } if (s + 1 != (1 << (len - 2))) irot *= irate3[__builtin_ctzll(~(unsigned int)(s))]; } len -= 2; } } T e = T(n).inv(); for (auto &x : a) x *= e; } else { int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed while (len < h) { if (h - len == 1) { int p = 1 << (h - len - 1); T rot = 1; for (int s = 0; s < (1 << len); s++) { int offset = s << (h - len); for (int i = 0; i < p; i++) { auto l = a[i + offset]; auto r = a[i + offset + p] * rot; a[i + offset] = l + r; a[i + offset + p] = l - r; } if (s + 1 != (1 << len)) rot *= rate2[__builtin_ctzll(~(unsigned int)(s))]; } len++; } else { // 4-base int p = 1 << (h - len - 2); T rot = 1, imag = root[2]; for (int s = 0; s < (1 << len); s++) { T rot2 = rot * rot; T rot3 = rot2 * rot; int offset = s << (h - len); for (int i = 0; i < p; i++) { auto mod2 = 1ULL * T::get_mod() * T::get_mod(); auto a0 = 1ULL * a[i + offset].v; auto a1 = 1ULL * a[i + offset + p].v * rot.v; auto a2 = 1ULL * a[i + offset + 2 * p].v * rot2.v; auto a3 = 1ULL * a[i + offset + 3 * p].v * rot3.v; auto a1na3imag = 1ULL * T(a1 + mod2 - a3).v * imag.v; auto na2 = mod2 - a2; a[i + offset] = a0 + a2 + a1 + a3; a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3)); a[i + offset + 2 * p] = a0 + na2 + a1na3imag; a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag); } if (s + 1 != (1 << len)) rot *= rate3[__builtin_ctzll(~(unsigned int)(s))]; } len += 2; } } } } vector<T> mult(const vector<T> &a, const vector<T> &b) { if (a.empty() or b.empty()) return vector<T>(); int as = a.size(), bs = b.size(); int n = as + bs - 1; if (as <= 30 or bs <= 30) { if (as > 30) return mult(b, a); vector<T> res(n); rep(i, 0, as) rep(j, 0, bs) res[i + j] += a[i] * b[j]; return res; } int m = 1; while (m < n) m <<= 1; vector<T> res(m); rep(i, 0, as) res[i] = a[i]; ntt(res); if (a == b) rep(i, 0, m) res[i] *= res[i]; else { vector<T> c(m); rep(i, 0, bs) c[i] = b[i]; ntt(c); rep(i, 0, m) res[i] *= c[i]; } ntt(res, 1); res.resize(n); return res; } }; /** * @brief Number Theoretic Transform */ #line 2 "library/FPS/fps.hpp" template <typename T> struct Poly : vector<T> { Poly(int n = 0) { this->assign(n, T()); } Poly(const initializer_list<T> f) : vector<T>::vector(f) {} Poly(const vector<T> &f) { this->assign(ALL(f)); } int deg() const { return this->size() - 1; } T eval(const T &x) { T res; for (int i = this->size() - 1; i >= 0; i--) res *= x, res += this->at(i); return res; } Poly rev() const { Poly res = *this; reverse(ALL(res)); return res; } void shrink() { while (!this->empty() and this->back() == 0) this->pop_back(); } Poly operator>>(ll sz) const { if ((int)this->size() <= sz) return {}; Poly ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } Poly operator<<(ll sz) const { Poly ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } Poly<T> mult(const Poly<T> &a, const Poly<T> &b) { if (a.empty() or b.empty()) return {}; int as = a.size(), bs = b.size(); int n = as + bs - 1; if (as <= 30 or bs <= 30) { if (as > 30) return mult(b, a); Poly<T> res(n); rep(i, 0, as) rep(j, 0, bs) res[i + j] += a[i] * b[j]; return res; } int m = 1; while (m < n) m <<= 1; Poly<T> res(m); rep(i, 0, as) res[i] = a[i]; res.NTT(0); if (a == b) rep(i, 0, m) res[i] *= res[i]; else { Poly<T> c(m); rep(i, 0, bs) c[i] = b[i]; c.NTT(0); rep(i, 0, m) res[i] *= c[i]; } res.NTT(1); res.resize(n); return res; } Poly square() const { return Poly(mult(*this, *this)); } Poly operator-() const { return Poly() - *this; } Poly operator+(const Poly &g) const { return Poly(*this) += g; } Poly operator+(const T &g) const { return Poly(*this) += g; } Poly operator-(const Poly &g) const { return Poly(*this) -= g; } Poly operator-(const T &g) const { return Poly(*this) -= g; } Poly operator*(const Poly &g) const { return Poly(*this) *= g; } Poly operator*(const T &g) const { return Poly(*this) *= g; } Poly operator/(const Poly &g) const { return Poly(*this) /= g; } Poly operator/(const T &g) const { return Poly(*this) /= g; } Poly operator%(const Poly &g) const { return Poly(*this) %= g; } pair<Poly, Poly> divmod(const Poly &g) const { Poly q = *this / g, r = *this - g * q; r.shrink(); return {q, r}; } Poly &operator+=(const Poly &g) { if (g.size() > this->size()) this->resize(g.size()); rep(i, 0, g.size()) { (*this)[i] += g[i]; } return *this; } Poly &operator+=(const T &g) { if (this->empty()) this->push_back(0); (*this)[0] += g; return *this; } Poly &operator-=(const Poly &g) { if (g.size() > this->size()) this->resize(g.size()); rep(i, 0, g.size()) { (*this)[i] -= g[i]; } return *this; } Poly &operator-=(const T &g) { if (this->empty()) this->push_back(0); (*this)[0] -= g; return *this; } Poly &operator*=(const Poly &g) { *this = mult(*this, g); return *this; } Poly &operator*=(const T &g) { rep(i, 0, this->size())(*this)[i] *= g; return *this; } Poly &operator/=(const Poly &g) { if (g.size() > this->size()) { this->clear(); return *this; } Poly g2 = g; reverse(ALL(*this)); reverse(ALL(g2)); int n = this->size() - g2.size() + 1; this->resize(n); g2.resize(n); *this *= g2.inv(); this->resize(n); reverse(ALL(*this)); shrink(); return *this; } Poly &operator/=(const T &g) { rep(i, 0, this->size())(*this)[i] /= g; return *this; } Poly &operator%=(const Poly &g) { *this -= *this / g * g; shrink(); return *this; } Poly diff() const { Poly res(this->size() - 1); rep(i, 0, res.size()) res[i] = (*this)[i + 1] * (i + 1); return res; } Poly inte() const { Poly res(this->size() + 1); for (int i = res.size() - 1; i; i--) res[i] = (*this)[i - 1] / i; return res; } Poly log() const { assert(this->front() == 1); const int n = this->size(); Poly res = diff() * inv(); res = res.inte(); res.resize(n); return res; } Poly shift(const int &c) const { const int n = this->size(); Poly res = *this, g(n); g[0] = 1; rep(i, 1, n) g[i] = g[i - 1] * c / i; vector<T> fact(n, 1); rep(i, 0, n) { if (i) fact[i] = fact[i - 1] * i; res[i] *= fact[i]; } res = res.rev(); res *= g; res.resize(n); res = res.rev(); rep(i, 0, n) res[i] /= fact[i]; return res; } Poly inv() const { const int n = this->size(); Poly res(1); res.front() = T(1) / this->front(); for (int k = 1; k < n; k <<= 1) { Poly f(k * 2), g(k * 2); rep(i, 0, min(n, k * 2)) f[i] = (*this)[i]; rep(i, 0, k) g[i] = res[i]; f.NTT(0); g.NTT(0); rep(i, 0, k * 2) f[i] *= g[i]; f.NTT(1); rep(i, 0, k) { f[i] = 0; f[i + k] = -f[i + k]; } f.NTT(0); rep(i, 0, k * 2) f[i] *= g[i]; f.NTT(1); rep(i, 0, k) f[i] = res[i]; swap(res, f); } res.resize(n); return res; } Poly exp() const { const int n = this->size(); if (n == 1) return Poly({T(1)}); Poly b(2), c(1), z1, z2(2); b[0] = c[0] = z2[0] = z2[1] = 1; b[1] = (*this)[1]; for (int k = 2; k < n; k <<= 1) { Poly y = b; y.resize(k * 2); y.NTT(0); z1 = z2; Poly z(k); rep(i, 0, k) z[i] = y[i] * z1[i]; z.NTT(1); rep(i, 0, k >> 1) z[i] = 0; z.NTT(0); rep(i, 0, k) z[i] *= -z1[i]; z.NTT(1); c.insert(c.end(), z.begin() + (k >> 1), z.end()); z2 = c; z2.resize(k * 2); z2.NTT(0); Poly x = *this; x.resize(k); x = x.diff(); x.resize(k); x.NTT(0); rep(i, 0, k) x[i] *= y[i]; x.NTT(1); Poly bb = b.diff(); rep(i, 0, k - 1) x[i] -= bb[i]; x.resize(k * 2); rep(i, 0, k - 1) { x[k + i] = x[i]; x[i] = 0; } x.NTT(0); rep(i, 0, k * 2) x[i] *= z2[i]; x.NTT(1); x.pop_back(); x = x.inte(); rep(i, k, min(n, k * 2)) x[i] += (*this)[i]; rep(i, 0, k) x[i] = 0; x.NTT(0); rep(i, 0, k * 2) x[i] *= y[i]; x.NTT(1); b.insert(b.end(), x.begin() + k, x.end()); } b.resize(n); return b; } Poly pow(ll t) { if (t == 0) { Poly res(this->size()); res[0] = 1; return res; } int n = this->size(), k = 0; while (k < n and (*this)[k] == 0) k++; Poly res(n); if (__int128_t(t) * k >= n) return res; n -= t * k; Poly g(n); T c = (*this)[k], ic = c.inv(); rep(i, 0, n) g[i] = (*this)[i + k] * ic; g = g.log(); for (auto &x : g) x *= t; g = g.exp(); c = c.pow(t); rep(i, 0, n) res[i + t * k] = g[i] * c; return res; } void NTT(bool inv); }; /** * @brief Formal Power Series (NTT-friendly mod) */ #line 8 "sol.cpp" using Fp = fp<998244353>; NTT<Fp> ntt; template <> void Poly<Fp>::NTT(bool inv) { ntt.ntt(*this, inv); } #line 2 "library/Math/fastdiv.hpp" struct FastDiv { using u64 = unsigned ll; using u128 = __uint128_t; u128 mod, mh, ml; explicit FastDiv(u64 mod = 1) : mod(mod) { u128 m = u128(-1) / mod; if (m * mod + mod == u128(0)) ++m; mh = m >> 64; ml = m & u64(-1); } u64 umod() const { return mod; } u64 modulo(u128 x) { u128 z = (x & u64(-1)) * ml; z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64); z = (x >> 64) * mh + (z >> 64); x -= z * mod; return x < mod ? x : x - mod; } u64 mul(u64 a, u64 b) { return modulo(u128(a) * b); } }; /** * @brief Fast Division */ #line 2 "library/Math/miller.hpp" struct m64 { using i64 = int64_t; using u64 = uint64_t; using u128 = __uint128_t; static u64 mod; static u64 r; static u64 n2; static u64 get_r() { u64 ret = mod; rep(_,0,5) ret *= 2 - mod * ret; return ret; } static void set_mod(u64 m) { assert(m < (1LL << 62)); assert((m & 1) == 1); mod = m; n2 = -u128(m) % m; r = get_r(); assert(r * mod == 1); } static u64 get_mod() { return mod; } u64 a; m64() : a(0) {} m64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){}; static u64 reduce(const u128 &b) { return (b + u128(u64(b) * u64(-r)) * mod) >> 64; } u64 get() const { u64 ret = reduce(a); return ret >= mod ? ret - mod : ret; } m64 &operator*=(const m64 &b) { a = reduce(u128(a) * b.a); return *this; } m64 operator*(const m64 &b) const { return m64(*this) *= b; } bool operator==(const m64 &b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const m64 &b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } m64 pow(u128 n) const { m64 ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } }; typename m64::u64 m64::mod, m64::r, m64::n2; bool Miller(ll n){ if(n<2 or (n&1)==0)return (n==2); m64::set_mod(n); ll d=n-1; while((d&1)==0)d>>=1; vector<ll> seeds; if(n<(1<<30))seeds={2, 7, 61}; else seeds={2, 325, 9375, 28178, 450775, 9780504}; for(auto& x:seeds){ if(n<=x)break; ll t=d; m64 y=m64(x).pow(t); while(t!=n-1 and y!=1 and y!=n-1){ y*=y; t<<=1; } if(y!=n-1 and (t&1)==0)return 0; } return 1; } /** * @brief Miller-Rabin */ #line 2 "library/Utility/random.hpp" namespace Random { mt19937_64 randgen(chrono::steady_clock::now().time_since_epoch().count()); using u64 = unsigned long long; u64 get() { return randgen(); } template <typename T> T get(T L) { // [0,L] return get() % (L + 1); } template <typename T> T get(T L, T R) { // [L,R] return get(R - L) + L; } double uniform() { return double(get(1000000000)) / 1000000000; } string str(int n) { string ret; rep(i, 0, n) ret += get('a', 'z'); return ret; } template <typename Iter> void shuffle(Iter first, Iter last) { if (first == last) return; int len = 1; for (auto it = first + 1; it != last; it++) { len++; int j = get(0, len - 1); if (j != len - 1) iter_swap(it, first + j); } } template <typename T> vector<T> select(int n, T L, T R) { // [L,R] if (n * 2 >= R - L + 1) { vector<T> ret(R - L + 1); iota(ALL(ret), L); shuffle(ALL(ret)); ret.resize(n); return ret; } else { unordered_set<T> used; vector<T> ret; while (SZ(used) < n) { T x = get(L, R); if (!used.count(x)) { used.insert(x); ret.push_back(x); } } return ret; } } void relabel(int n, vector<pair<int, int>> &es) { shuffle(ALL(es)); vector<int> ord(n); iota(ALL(ord), 0); shuffle(ALL(ord)); for (auto &[u, v] : es) u = ord[u], v = ord[v]; } template <bool directed, bool simple> vector<pair<int, int>> genGraph(int n) { vector<pair<int, int>> cand, es; rep(u, 0, n) rep(v, 0, n) { if (simple and u == v) continue; if (!directed and u > v) continue; cand.push_back({u, v}); } int m = get(SZ(cand)); vector<int> ord; if (simple) ord = select(m, 0, SZ(cand) - 1); else { rep(_, 0, m) ord.push_back(get(SZ(cand) - 1)); } for (auto &i : ord) es.push_back(cand[i]); relabel(n, es); return es; } vector<pair<int, int>> genTree(int n) { vector<pair<int, int>> es; rep(i, 1, n) es.push_back({get(i - 1), i}); relabel(n, es); return es; } }; // namespace Random /** * @brief Random */ #line 4 "library/Math/pollard.hpp" vector<ll> Pollard(ll n) { if (n <= 1) return {}; if (Miller(n)) return {n}; if ((n & 1) == 0) { vector<ll> v = Pollard(n >> 1); v.push_back(2); return v; } for (ll x = 2, y = 2, d;;) { ll c = Random::get(2LL, n - 1); do { x = (__int128_t(x) * x + c) % n; y = (__int128_t(y) * y + c) % n; y = (__int128_t(y) * y + c) % n; d = __gcd(x - y + n, n); } while (d == 1); if (d < n) { vector<ll> lb = Pollard(d), rb = Pollard(n / d); lb.insert(lb.end(), ALL(rb)); return lb; } } } /** * @brief Pollard-Rho */ #line 4 "library/Math/primitive.hpp" ll mpow(ll a, i128 t, ll m) { ll res = 1; FastDiv im(m); while (t) { if (t & 1) res = im.mul(res, a); a = im.mul(a, a); t >>= 1; } return res; } ll minv(ll a, ll m) { ll b = m, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u = (u % m + m) % m; return u; } ll getPrimitiveRoot(ll p) { vector<ll> ps = Pollard(p - 1); sort(ALL(ps)); rep(x, 1, inf) { for (auto &q : ps) { if (mpow(x, (p - 1) / q, p) == 1) goto fail; } return x; fail:; } assert(0); } ll extgcd(ll a, ll b, ll &p, ll &q) { if (b == 0) { p = 1; q = 0; return a; } ll d = extgcd(b, a % b, q, p); q -= a / b * p; return d; } pair<ll, ll> crt(const vector<ll> &vs, const vector<ll> &ms) { ll V = vs[0], M = ms[0]; rep(i, 1, vs.size()) { ll p, q, v = vs[i], m = ms[i]; if (M < m) swap(M, m), swap(V, v); ll d = extgcd(M, m, p, q); if ((v - V) % d != 0) return {0, -1}; ll md = m / d, tmp = (v - V) / d % md * p % md; V += M * tmp; M *= md; } V = (V % M + M) % M; return {V, M}; } ll ModLog(ll a, ll b, ll p) { ll g = 1; for (ll t = p; t; t >>= 1) g = g * a % p; g = __gcd(g, p); ll t = 1, c = 0; for (; t % g; c++) { if (t == b) return c; t = t * a % p; } if (b % g) return -1; t /= g, b /= g; ll n = p / g, h = 0, gs = 1; for (; h * h < n; h++) gs = gs * a % n; unordered_map<ll, ll> bs; for (ll s = 0, e = b; s < h; bs[e] = ++s) e = e * a % n; for (ll s = 0, e = t; s < n;) { e = e * gs % n, s += h; if (bs.count(e)) { return c + s - bs[e]; } } return -1; } ll mod_root(ll k, ll a, ll m) { if (a == 0) return k ? 0 : -1; if (m == 2) return a & 1; k %= m - 1; ll g = gcd(k, m - 1); if (mpow(a, (m - 1) / g, m) != 1) return -1; a = mpow(a, minv(k / g, (m - 1) / g), m); FastDiv im(m); auto _subroot = [&](ll p, int e, ll a) -> ll { // x^(p^e)==a(mod m) ll q = m - 1; int s = 0; while (q % p == 0) { q /= p; s++; } int d = s - e; ll pe = mpow(p, e, m), res = mpow(a, ((pe - 1) * minv(q, pe) % pe * q + 1) / pe, m), c = 1; while (mpow(c, (m - 1) / p, m) == 1) c++; c = mpow(c, q, m); map<ll, ll> mp; ll v = 1, block = sqrt(d * p) + 1, bs = mpow(c, mpow(p, s - 1, m - 1) * block % (m - 1), m); rep(i, 0, block + 1) mp[v] = i, v = im.mul(v, bs); ll gs = minv(mpow(c, mpow(p, s - 1, m - 1), m), m); rep(i, 0, d) { ll err = im.mul(a, minv(mpow(res, pe, m), m)); ll pos = mpow(err, mpow(p, d - 1 - i, m - 1), m); rep(j, 0, block + 1) { if (mp.count(pos)) { res = im.mul(res, mpow(c, (block * mp[pos] + j) * mpow(p, i, m - 1) % (m - 1), m)); break; } pos = im.mul(pos, gs); } } return res; }; for (ll d = 2; d * d <= g; d++) if (g % d == 0) { int sz = 0; while (g % d == 0) { g /= d; sz++; } a = _subroot(d, sz, a); } if (g > 1) a = _subroot(g, 1, a); return a; } ull floor_root(ull a, ull k) { if (a <= 1 or k == 1) return a; if (k >= 64) return 1; if (k == 2) return sqrtl(a); constexpr ull LIM = -1; if (a == LIM) a--; auto mul = [&](ull &x, const ull &y) { if (x <= LIM / y) x *= y; else x = LIM; }; auto pw = [&](ull x, ull t) -> ull { ull y = 1; while (t) { if (t & 1) mul(y, x); mul(x, x); t >>= 1; } return y; }; ull ret = (k == 3 ? cbrt(a) - 1 : pow(a, nextafter(1 / double(k), 0))); while (pw(ret + 1, k) <= a) ret++; return ret; } /** * @brief Primitive Function */ #line 15 "sol.cpp" const int smod = Fp::get_mod() - 1; const int ssmod = 402653184; #line 2 "library/FPS/berlekampmassey.hpp" template<typename T>vector<T> BerlekampMassey(vector<T>& a){ int n=a.size(); T d=1; vector<T> b(1),c(1); b[0]=c[0]=1; rep(j,1,n+1){ int l=c.size(),m=b.size(); T x=0; rep(i,0,l)x+=c[i]*a[j-l+i]; b.push_back(0); m++; if(x==0)continue; T coeff=-x/d; if(l<m){ auto tmp=c; c.insert(c.begin(),m-l,0); rep(i,0,m)c[m-1-i]+=coeff*b[m-1-i]; b=tmp; d=x; } else rep(i,0,m)c[l-1-i]+=coeff*b[m-1-i]; } return c; } /** * @brief Berlekamp Massey Algorithm */ #line 2 "library/FPS/nthterm.hpp" template<typename T>T nth(Poly<T> p,Poly<T> q,ll n){ while(n){ Poly<T> base(q),np,nq; for(int i=1;i<(int)q.size();i+=2)base[i]=-base[i]; p*=base; q*=base; for(int i=n&1;i<(int)p.size();i+=2)np.emplace_back(p[i]); for(int i=0;i<(int)q.size();i+=2)nq.emplace_back(q[i]); swap(p,np); swap(q,nq); n>>=1; } return p[0]/q[0]; } /** * @brief Bostan-Mori Algorithm */ #line 20 "sol.cpp" pair<Fp, int> step(ll n, Fp ret, int keta) { int d = to_string(n).size(); ret += Fp(10).pow(keta) * (Fp(10).pow(d) * ret + n); keta = (keta * 2 + d) % smod; return {ret, keta}; } pair<Fp, int> naive(ll n) { Fp ret = 0; int keta = 0; rep(x, 1, n + 1) { tie(ret, keta) = step(x, ret, keta); } return {ret, keta}; } Poly<Fp> cs = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 998244351, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; int main() { ll N; read(N); // if (LOCAL) { // rep(D, 1, 6) { // int ten = 1; // rep(_, 0, D) ten *= 10; // ten--; // show(ten, naive(ten)); // } // show(naive(N)); // } if (N <= 1000) { print(naive(N).first); return 0; } auto [ret, keta] = naive(999); rep(D, 4, 20) { ll nxt; { ll c = (keta - D + smod) % smod, step = 1; ll sub = 1; rep(_, 0, D) sub = (sub * 10) % ssmod; rep(_, 0, D + 1) step = (step * 10) % ssmod; step = (step - sub + ssmod) % ssmod; nxt = mpow(2, step, smod); nxt = (nxt * (c + D * 2)) % smod; nxt = (nxt - D + smod) % smod; } ll ten = 1; rep(_, 0, D - 1) ten *= 10; if (N <= ten + 100) { for (ll x = ten; x <= N; x++) tie(ret, keta) = step(x, ret, keta); print(ret); return 0; } for (ll x = ten; x < ten + 100; x++) tie(ret, keta) = step(x, ret, keta); Poly<Fp> dat; for (ll x = ten + 100; x < ten + 300; x++) { dat.push_back(ret); tie(ret, keta) = step(x, ret, keta); } dat *= cs; dat.resize(200); if (SZ(to_string(N)) == D) { ret = nth(dat, cs, N + 1 - (ten + 100)); print(ret); return 0; } ret = nth(dat, cs, ten * 10 - (ten + 100)); keta = nxt; } return 0; }