結果
| 問題 |
No.2995 The Ruler Sequence Concatenation
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2024-12-20 05:04:01 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 57,795 bytes |
| コンパイル時間 | 7,322 ms |
| コンパイル使用メモリ | 324,052 KB |
| 最終ジャッジ日時 | 2025-02-26 15:46:14 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 3 WA * 2 TLE * 2 -- * 2 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; using ull = unsigned long long; // -2^63 ~ 2^63 = 9e18(int は -2^31 ~ 2^31 = 2e9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d ビット全探索(昇順)
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set の全要素(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定
// 汎用関数の定義
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // 非負mod
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<449>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE の代わりに MLE を出す
#endif
//【桁の数からの復元(文字列)】O(n)
/*
* b 進表記で表された数 s[0..n) の値を返す.桁の '0' は zero とする.
*/
template <class T>
T from_digits(const string& s, int b = 10, char zero = '0') {
// verify : https://atcoder.jp/contests/abc242/tasks/abc242_e
T res = 0, powb = 1;
int n = sz(s);
repir(i, n - 1, 0) {
res += (s[i] - zero) * powb;
powb *= b;
}
return res;
}
mint naive(ll N) {
string s = "1";
repi(n, 2, N) {
// dump(s);
s = s + to_string(n) + s;
}
return from_digits<mint>(s);
}
void zikken() {
int N = 25;
string s = "1";
dump(from_digits<mint>(s));
repi(n, 2, N) {
s = s + to_string(n) + s;
dump(from_digits<mint>(s));
}
exit(0);
}
/*
1
121
1213121
496214796
778717821
162043564
286210518
1137520
172736215
269257815
75324409
314627573
140927773
436499868
623225985
174558060
831595600
706192356
290107364
361981695
379707378
165577999
974957836
462669711
422609226
*/
mint TLE(ll N) {
mint r = 1;
mint pow10 = 10;
// dump(r);
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = powi(10, l);
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
// dump(r);
}
return r;
}
void zikken2() {
int N = 20;
repi(n, 1, N) {
dump("n:", n);
dump(naive(n));
dump(TLE(n));
}
exit(0);
}
//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
* n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
* n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
* 二次元配列 a[0..n)[0..m) の要素で初期化する.
*
* bool empty() : O(1)
* 行列が空かを返す.
*
* A + B : O(n m)
* n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
* n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
* n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
* n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)(やや遅い)
* m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
* n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
* 自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
int n, m; // 行列のサイズ(n 行 m 列)
vector<vector<T>> v; // 行列の成分
// n×m 零行列で初期化する.
Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}
// n×n 単位行列で初期化する.
Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }
// 二次元配列 a[0..n)[0..m) の要素で初期化する.
Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
Matrix() : n(0), m(0) {}
// 代入
Matrix(const Matrix&) = default;
Matrix& operator=(const Matrix&) = default;
// アクセス
inline vector<T> const& operator[](int i) const { return v[i]; }
inline vector<T>& operator[](int i) {
// verify : https://judge.yosupo.jp/problem/matrix_product
// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
return v[i];
}
// 入力
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
return is;
}
// 行の追加
void push_back(const vector<T>& a) {
Assert(sz(a) == m);
v.push_back(a);
n++;
}
// 行の削除
void pop_back() {
Assert(n > 0);
v.pop_back();
n--;
}
// サイズ変更
void resize(int n_) {
v.resize(n_);
n = n_;
}
void resize(int n_, int m_) {
n = n_;
m = m_;
v.resize(n);
rep(i, n) v[i].resize(m);
}
// 空か
bool empty() const { return min(n, m) == 0; }
// 比較
bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
// 加算,減算,スカラー倍
Matrix& operator+=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] += b[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] -= b[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, n) rep(j, m) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// 行列ベクトル積 : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(n);
rep(i, n) rep(j, m) y[i] += v[i][j] * x[j];
return y;
}
// ベクトル行列積 : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.m);
rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
return y;
}
// 積:O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://judge.yosupo.jp/problem/matrix_product
Matrix res(n, b.m);
rep(i, res.n) rep(k, m) rep(j, res.m) res[i][j] += v[i][k] * b[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// 累乗:O(n^3 log d)
Matrix pow(ll d) const {
// verify : https://judge.yosupo.jp/problem/pow_of_matrix
Matrix res(n), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d >>= 1;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.n) {
os << "[";
rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
if (i < a.n - 1) os << "\n";
}
return os;
}
#endif
};
//【線形方程式】O(n m min(n, m))
/*
* 与えられた n×m 行列 A と n 次元ベクトル b に対し,
* 線形方程式 A x = b の特殊解 x0(m 次元ベクトル)を返す(なければ空リスト)
* また同次形 A x = 0 の解空間の基底(m 次元ベクトル)のリストを xs に格納する.
*/
template <class T>
vector<T> gauss_jordan_elimination(const Matrix<T>& A, const vector<T>& b, vector<vector<T>>* xs = nullptr) {
// verify : https://judge.yosupo.jp/problem/system_of_linear_equations
int n = A.n, m = A.m;
// v : 拡大係数行列 (A | b)
vector<vector<T>> v(n, vector<T>(m + 1));
rep(i, n) rep(j, m) v[i][j] = A[i][j];
rep(i, n) v[i][m] = b[i];
// pivots[i] : 第 i 行のピボットが第何列にあるか
vi pivots;
// 注目位置を v[i][j] とする.
int i = 0, j = 0;
while (i < n && j <= m) {
// 注目列の下方の行から非 0 成分を見つける.
int i2 = i;
while (i2 < n && v[i2][j] == T(0)) i2++;
// 見つからなかったら注目位置を右に移す.
if (i2 == n) { j++; continue; }
// 見つかったら第 i 行とその行を入れ替える.
if (i != i2) swap(v[i], v[i2]);
// v[i][j] をピボットに選択する.
pivots.push_back(j);
// v[i][j] が 1 になるよう第 i 行全体を v[i][j] で割る.
T vij_inv = T(1) / v[i][j];
repi(j2, j, m) v[i][j2] *= vij_inv;
// 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる.
rep(i2, n) {
if (v[i2][j] == T(0) || i2 == i) continue;
T mul = v[i2][j];
repi(j2, j, m) v[i2][j2] -= v[i][j2] * mul;
}
// 注目位置を右下に移す.
i++; j++;
}
// 最後に見つかったピボットの位置が第 m 列ならば解なし.
if (!pivots.empty() && pivots.back() == m) return vector<T>();
// A x = b の特殊解 x0 の構成(任意定数は全て 0 にする)
vector<T> x0(m);
int rnk = sz(pivots);
rep(i, rnk) x0[pivots[i]] = v[i][m];
// 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする)
if (xs != nullptr) {
xs->clear();
int i = 0;
rep(j, m) {
if (i < rnk && j == pivots[i]) {
i++;
continue;
}
vector<T> x(m);
x[j] = T(1);
rep(i2, i) x[pivots[i2]] = -v[i2][j];
xs->emplace_back(move(x));
}
}
return x0;
}
//【変数係数線形漸化式の発見】O(n L^2 D^2 + N (L D + log(mod)))
/*
* 係数多項式の次数が D 次未満の L 項間漸化式
* Σi∈[0..L) Σj∈[0..D) c(i,j) (m+i)^j a[m+i] = 0
* の存在を仮定して a[0..n) を延長し a[0..N] にする(失敗したら false を返す)
*
* 制約 : n ≧ L(D+1)-1(ランク落ちしてるとこれでも足りないかも)
*
* 利用:【行列】,【線形方程式】
*/
bool p_recursive(int N, vm& a, int L, int D, vm* coef = nullptr) {
// verify : https://atcoder.jp/contests/abc222/tasks/abc222_h
int n = sz(a);
// 既に十分な長さがある場合はそのままで良い.
if (N <= n - 1) {
a.resize(N + 1);
return true;
}
// 式が足りないといつでも非自明解をもってしまって意味がない.
if (n < L * (D + 1) - 1) return false;
// 行列方程式 A x = 0 を解いて一般解の基底 xs を求める.
Matrix<mint> A(n - L + 1, L * D);
repi(n0, 0, n - L) {
rep(i, L) rep(j, D) {
A[n0][i * D + j] = mint(n0 + i).pow(j) * a[n0 + i];
}
}
vvm xs;
gauss_jordan_elimination(A, vm(n - L + 1), &xs);
// 自明解 x = 0 しか存在しない場合は失敗.
if (xs.empty()) return false;
a.resize(N + 1);
// 得られた非自明解 xs.back() から漸化式を復元し,それに基づき a[0..n) を延長する.
auto& x = xs.back();
repi(n0, n - L + 1, N - L + 1) {
mint num = 0;
rep(i, L - 1) {
mint pow_n0i = 1;
rep(j, D) {
num += x[i * D + j] * pow_n0i * a[n0 + i];
pow_n0i *= n0 + i;
}
}
mint dnm = 0;
mint pow_n0L = 1;
rep(j, D) {
dnm += x[(L - 1) * D + j] * pow_n0L;
pow_n0L *= n0 + L - 1;
}
// num + dnm * a[n0 + L - 1] = 0
a[n0 + L - 1] = -num / dnm;
}
if (coef) *coef = move(x);
return true;
}
void zikken3() {
vm a;
repi(n, 101, 999) {
a.push_back(TLE(n));
}
auto ok = p_recursive(1000, a, 7, 7);
dump("ok?:", ok);
exit(0);
}
//【ローリングハッシュ(列)】
/*
* Rolling_hash<STR>(STR s, bool reversible = false) : O(n)
* 列 s[0..n) で初期化する.reversible = true にすると逆順のハッシュも計算可能になる.
* 制約:STR は string,vector<T> など.ll 範囲の負数は扱えない.
*
* ull get(int l, int r) : O(1)
* 部分文字列 s[l..r) のハッシュ値を返す(空なら 0)
*
* ull get_rev(int l, int r) : O(1)
* 部分文字列 s[l..r) を反転した文字列のハッシュ値を返す(空なら 0)
*
* ull join(ull hs, ull ht, int len) : O(1)
* ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す.
*
* ull repeat(ull h, int len, ll K) : O(log K)
* ハッシュ値 h をもつ s[0..len) を K 個連結した文字列のハッシュ値を返す.
*/
template <class STR>
class Rolling_hash {
// 参考 : https://qiita.com/keymoon/items/11fac5627672a6d6a9f6
//【方法】
// 2^61 - 1 は十分大きい素数であるからローリングハッシュの法として適切である.
// a, b < 2^61 - 1 とし,積 a b mod (2^61 - 1) を高速に計算できればよい.
//
// まず a, b を上位と下位に分解し
// a = 2^31 ah + al, b = 2^31 bh + bl (ah, bh < 2^30, al, bl < 2^31)
// とする.これらの積をとると,
// a b
// = (2^31 ah + al)(2^31 bh + bl)
// = 2^62 ah bh + 2^31 (ah bl + bh al) + al bl
// となる.2^61 ≡ 1 (mod 2^61 - 1) に注意してそれぞれの項を mod 2^61 - 1 で整理する.
//
// 第 1 項については,
// 2^62 ah bh
// = 2 ah bh
// ≦ 2 (2^30-1) (2^30-1)
// となる.
//
// 第 2 項については,c := ah bl + bh al < 2^62 を上位と下位に分解し
// c = 2^30 ch + cl (ch < 2^32, cl < 2^30)
// とすると,
// 2^31 c
// = 2^31 (2^30 ch + cl)
// = ch + 2^31 cl
// ≦ (2^32-1) + 2^31 (2^30-1)
// となる.
//
// 第 3 項については,
// al bl
// ≦ (2^31-1) (2^31-1)
// となる.
//
// これらの和は
// 2 ah bh + ch + 2^31 cl + al bl
// ≦ 2 (2^30-1) (2^30-1) + (2^32-1) + 2^31 (2^30-1) + (2^31-1) (2^31-1)
// = 9223372030412324866 < 9223372036854775808 = 2^63 << 2^64
// となるのでオーバーフローの心配はない.
static constexpr ull MASK30 = (1ULL << 30) - 1;
static constexpr ull MASK31 = (1ULL << 31) - 1;
static constexpr ull MOD = (1ULL << 61) - 1; // 法(素数)
// a mod (2^61 - 1) を返す.
inline ull get_mod(ull a) const {
ull ah = a >> 61, al = a & MOD;
ull res = ah + al;
if (res >= MOD) res -= MOD;
return res;
}
// x ≡ a b mod (2^61 - 1) なる x < 2^63 を返す(ただし a, b < 2^61)
inline ull mul(ull a, ull b) const {
ull ah = a >> 31, al = a & MASK31;
ull bh = b >> 31, bl = b & MASK31;
ull c = ah * bl + bh * al;
ull ch = c >> 30, cl = c & MASK30;
ull term1 = 2 * ah * bh;
ull term2 = ch + (cl << 31);
ull term3 = al * bl;
return term1 + term2 + term3; // < 2^63
}
static constexpr ull BASE = 1234567891011; // 適当な基数(本当は実行時に乱択すべき)
static constexpr ull SHIFT = 4295090752; // 適当なシフト
// 列の長さ
int n;
// powB[i] : BASE^i
vector<ull> powB;
// v[i] : s[0..i) のハッシュ値 Σj∈[0..i) (s[j]+SHIFT) BASE^(i-1-j)
// v_rev[i] : s[n-i..n) を反転した文字列のハッシュ値
vector<ull> v, v_rev;
public:
// 列 s[0..n) で初期化する.
Rolling_hash(const STR& s, bool reversible = false) : n(sz(s)), powB(n + 1), v(n + 1) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec
powB[0] = 1;
rep(i, n) powB[i + 1] = get_mod(mul(powB[i], BASE));
rep(i, n) v[i + 1] = get_mod(mul(v[i], BASE) + (ull)s[i] + SHIFT);
if (reversible) {
v_rev.resize(n + 1);
rep(i, n) v_rev[i + 1] = get_mod(mul(v_rev[i], BASE) + (ull)s[n - 1 - i] + SHIFT);
}
}
Rolling_hash() : n(0) {}
// s[l..r) のハッシュ値の取得
ull get(int l, int r) const {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec
chmax(l, 0); chmin(r, n);
if (l >= r) return 0;
return get_mod(v[r] + 4 * MOD - mul(v[l], powB[r - l]));
}
// s[l..r) を反転した文字列のハッシュ値の取得
ull get_rev(int l, int r) {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_ec
chmax(l, 0); chmin(r, n);
if (l >= r) return 0;
Assert(!v_rev.empty());
// s[l..r) を反転した文字列は s_rev[n-r..n-l) に等しい.
return get_mod(v_rev[n - l] + 4 * MOD - mul(v_rev[n - r], powB[r - l]));
}
// ハッシュ値 hs をもつ s とハッシュ値 ht をもつ t[0..len) を連結した s+t のハッシュ値を返す.
ull join(ull hs, ull ht, int len) const {
// verify : https://atcoder.jp/contests/abc284/tasks/abc284_f
Assert(len <= n);
return get_mod(ht + mul(hs, powB[len]));
}
// ハッシュ値 h をもつ s[0..len) を K 個連結した文字列のハッシュ値を返す.
ull repeat(ull h, int len, ll K) const {
// verify : https://mojacoder.app/users/bayashiko/problems/rps
Assert(len <= n);
ull res = 0, pow2 = h; ll len_pow2 = len;
while (K > 0) {
if (K & 1) res = join(res, pow2, len_pow2);
pow2 = join(pow2, pow2, len_pow2);
len_pow2 *= 2;
K /= 2;
}
return res;
}
};
//【列の周期の候補】O(n)
/*
* 与えられた列 a[0..n) に対し,a[n-2t..n-t) = a[n-t..n) を満たす t を
* 降順に 2 個求め,その GCD を返す(2 個なければ -1)
*
* 利用:【ローリングハッシュ(列)】
*/
template <class STR>
int pseudo_cycle(const STR& a) {
// verify : https://atcoder.jp/contests/arc172/tasks/arc172_e
int n = sz(a);
Rolling_hash A(a);
int res = 0; int k = 2;
repir(t, n / 2, 1) {
if (A.get(n - 2 * t, n - t) == A.get(n - t, n)) {
res = gcd(res, t);
if (--k == 0) break;
}
}
if (k > 0) res = -1;
return res;
}
void zikken4() {
modint::set_mod(769);
int N = 99999999;
vi res{ 1 };
modint r = 1;
modint pow10 = 10;
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = powi(10, l);
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
res.push_back(r.val());
}
dump(pseudo_cycle(res));
// p=97, N=999 -> 194
// p=97, N=9999 -> 194
// p=97, N=99999 -> 4656 = 97 * 48
// p=97, N=999999 -> 194
// p=97, N=9999999 -> 194
// p=997, N=99999 -> ?
// p=997, N=999999 -> 81754 = 997 * 82
// p=997, N=9999999 -> 81754
// p=998244353 -> 998244353 * 2 のはず
// p=769 -> 1538 = 769 * 2
// p=769, N=99999999 -> 295296
exit(0);
}
//【フロイドの循環検出法】O(nc + c)
/*
* a[i+1] = f(a[i]), a[0] = a0 なる数列について,a[0] から始まる非周期列の長さ nc と
* a[nc] から始まる周期列の長さ c の組 {nc, c} を返す.
*/
template <class T, class FUNC>
pii floyds_cycle_finding(const FUNC& f, T a0) {
// 参考 : https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%AD%E3%82%A4%E3%83%89%E3%81%AE%E5%BE%AA%E7%92%B0%E6%A4%9C%E5%87%BA%E6%B3%95
// verify : https://atcoder.jp/contests/abc030/tasks/abc030_d
T x = a0, y = a0;
do {
x = f(x);
y = f(f(y));
} while (x != y);
x = a0;
int nc = 0;
while (x != y) {
x = f(x);
y = f(y);
nc++;
}
int c = 0;
do {
x = f(x);
y = f(f(y));
c++;
} while (x != y);
return make_pair(nc, c);
/* f の定義の雛形
using T = int;
auto f = [&](T x) {
return x;
};
*/
}
void zikken5() {
modint::set_mod(768);
repi(k, 1, 18) {
using T = mint;
auto f = [&](T x) {
return 2 * x + k;
};
dump(k, floyds_cycle_finding<mint>(f, 1));
}
exit(0);
}
/*
1 (0,384)
2 (0,384)
3 (0,384)
4 (0,384)
5 (0,384)
6 (0,384)
7 (0,384)
8 (0,384)
9 (0,384)
10 (0,384)
11 (0,384)
12 (0,384)
13 (0,384)
14 (0,384)
15 (0,384)
16 (0,384)
17 (0,384)
18 (0,384)
*/
void zikken6() {
mint r = 1;
mint pow10 = 10;
int N = 1000;
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = powi(10, l);
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl; // 301
using T = tuple<mint, mint, mint>;
auto f = [&](T x) {
auto [r, p, n] = x;
mint nn = n + 1;
mint np = p * p * 4;
mint nr = r * (p * 4 + 1) + n * p;
return make_tuple(nr, np, nn);
};
auto [nc, c] = floyds_cycle_finding<T>(f, { r, pow10, mint(N) });
dump(nc, c); // 6 1538
repi(n, N + 1, N + 6 + ((9999 - 1006) % 1538)) {
string s = to_string(n);
int l = sz(s);
ll p = powi(10, l);
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl; // 393
exit(0);
}
void zikken7() {
mint r = 1;
mint pow10 = 10;
vl p10(18 + 1);
repi(i, 0, 18) p10[i] = powi(10, i);
ll N = 1; mint d = 10;
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl;
rep(hoge, 15) {
using T = tuple<mint, mint, mint>;
auto f = [&](T x) {
auto [r, p, n] = x;
mint nn = n + 1;
mint np = p * p * d;
mint nr = r * (p * d + 1) + n * p;
return make_tuple(nr, np, nn);
};
auto [nc, c] = floyds_cycle_finding<T>(f, { r, pow10, mint(N) });
dump(hoge, ":", nc, c); // 4 100576
if (hoge == 0) {
vector<T> a;
a.push_back({ r, pow10, mint(N) });
rep(fuga, 449 * 100) {
a.push_back(f(a.back()));
}
vm seq;
rep(k, 99) {
// dump(a[449 * k + 5]);
seq.push_back(get<0>(a[449 * k + 4]));
}
dump_list(seq);
auto ok = p_recursive(12345, seq, 3, 1);
dump("ok?:", ok); // 三項間線形漸化式がある.
exit(0);
}
repi(n, N + 1, N + nc + (((N * 10 - 1) - (N + nc)) % c)) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
repi(n, N * 10, N * 10) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl;
N *= 10;
d *= 10;
}
exit(0);
}
/*
1
0 : 4 100576
69
1 : 4 100576
255
2 : 4 100576
439
3 : 4 100576
12
4 : 4 100576
173
5 : 4 100576
248
6 : 4 100576
79
7 : 4 100576
368
8 : 4 100576
154
9 : 4 100576
250
10 : 5 100576
71
11 : 4 100576
368
12 : 5 100576
47
13 : 3 100576
273
14 : 3 100576
116
*/
//【フロイドの循環検出法】O(nc + c)
/*
* a[i+1] = f(a[i]), a[0] = a0 なる数列について,a[0] から始まる非周期列の長さ nc と
* a[nc] から始まる周期列の長さ c の組 {nc, c} を返す.
*/
template <class T, class FUNC>
pii floyds_cycle_finding2(const FUNC& f, T a0) {
// 参考 : https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%AD%E3%82%A4%E3%83%89%E3%81%AE%E5%BE%AA%E7%92%B0%E6%A4%9C%E5%87%BA%E6%B3%95
// verify : https://atcoder.jp/contests/abc030/tasks/abc030_d
ll cnt = 0;
T x = a0, y = a0;
do {
x = f(x);
y = f(f(y));
cnt++;
if (cnt % 10000000 == 0) dump("cnt:", cnt);
if (cnt > (ll)2e9) return { 0, 12345 }; // 大嘘
} while (x != y);
x = a0;
int nc = 0;
while (x != y) {
x = f(x);
y = f(y);
nc++;
}
int c = 0;
do {
x = f(x);
y = f(f(y));
c++;
} while (x != y);
return make_pair(nc, c);
/* f の定義の雛形
using T = int;
auto f = [&](T x) {
return x;
};
*/
}
void zikken8() {
mint r = 1;
mint pow10 = 10;
ll N = 1LL; mint d = 10LL;
vl p10(18 + 1);
repi(i, 0, 18) p10[i] = powi(10, i);
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
if (n % 10000000 == 0) dump("n:", n);
}
cout << r << endl; // 301
rep(hoge, 18) {
using T = tuple<mint, mint, mint>;
auto f = [&](T x) {
auto [r, p, n] = x;
mint nn = n + 1;
mint np = p * p * d;
mint nr = r * (p * d + 1) + n * p;
return make_tuple(nr, np, nn);
};
auto [nc, c] = floyds_cycle_finding2<T>(f, { r, pow10, mint(N) });
dump(nc, c); // 6 1538
repi(n, N + 1, N + nc + (((N * 10 - 1) - (N + nc)) % c)) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
repi(n, N * 10, N * 10) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl; // 593
N *= 10;
d *= 10;
}
exit(0);
}
//【形式的冪級数】
/*
* MFPS() : O(1)
* 零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
* 定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
* n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
* f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
* 畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1) f + g : O(n)
* f - c : O(1) c - f, f - g, -f : O(n)
* c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n |g|)
* f / c : O(n) f / g : O(n log n) f / g_sp : O(n |g|)
* 形式的冪級数としての和,差,積,商の結果を返す.
* g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
* 制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
* 1 / f mod z^d を返す.
* 制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
* 多項式としての f を g で割った商,余り,商と余りの組を返す.
* 制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
* 多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
* 単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
* 多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
* mod z^d をとる.
*
* f.resize() : O(n)
* 不要な高次の項を削る.
*
* f >> d, f << d : O(n)
* 係数列を d だけ右[左]シフトした多項式を返す.
* (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* f.push_back(c) : O(1)
* 最高次の係数として c を追加する.
*/
struct MFPS {
using SMFPS = vector<pim>;
int n; // 係数の個数(次数 + 1)
vm c; // 係数列
inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数
// コンストラクタ(0,定数,係数列で初期化)
MFPS() : n(0) {}
MFPS(mint c0) : n(1), c({ c0 }) {}
MFPS(int c0) : n(1), c({ mint(c0) }) {}
MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }
// 代入
MFPS(const MFPS& f) = default;
MFPS& operator=(const MFPS& f) = default;
MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }
void push_back(mint cn) { c.emplace_back(cn); ++n; }
void pop_back() { c.pop_back(); --n; }
[[nodiscard]] mint back() { return c.back(); }
// 比較
[[nodiscard]] bool operator==(const MFPS& g) const { return c == g.c; }
[[nodiscard]] bool operator!=(const MFPS& g) const { return c != g.c; }
// アクセス
inline mint const& operator[](int i) const { return c[i]; }
inline mint& operator[](int i) { return c[i]; }
// 次数
[[nodiscard]] int deg() const { return n - 1; }
[[nodiscard]] int size() const { return n; }
static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
CONV = CONV_;
}
// 加算
MFPS& operator+=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
else {
rep(i, n) c[i] += g.c[i];
repi(i, n, g.n - 1) c.push_back(g.c[i]);
n = g.n;
}
return *this;
}
[[nodiscard]] MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }
// 定数加算
MFPS& operator+=(const mint& sc) {
if (n == 0) { n = 1; c = { sc }; }
else { c[0] += sc; }
return *this;
}
[[nodiscard]] MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
[[nodiscard]] friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
[[nodiscard]] MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
[[nodiscard]] friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }
// 減算
MFPS& operator-=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
else {
rep(i, n) c[i] -= g.c[i];
repi(i, n, g.n - 1) c.push_back(-g.c[i]);
n = g.n;
}
return *this;
}
[[nodiscard]] MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }
// 定数減算
MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
[[nodiscard]] MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
[[nodiscard]] friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
[[nodiscard]] MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
[[nodiscard]] friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }
// 加法逆元
[[nodiscard]] MFPS operator-() const { return MFPS(*this) *= -1; }
// 定数倍
MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
[[nodiscard]] MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
[[nodiscard]] friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
[[nodiscard]] MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
[[nodiscard]] friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }
// 右からの定数除算
MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
[[nodiscard]] MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
[[nodiscard]] MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }
// 積
MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
[[nodiscard]] MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }
// 除算
[[nodiscard]] MFPS inv(int d) const {
// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series
//【方法】
// 1 / f mod z^d を求めることは,
// f g = 1 (mod z^d)
// なる g を求めることである.
// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
//
// d = 1 のときについては
// g = 1 / f[0] (mod z^1)
// である.
//
// 次に,
// g = h (mod z^k)
// が求まっているとして
// g mod z^(2 k)
// を求める.最初の式を変形していくことで
// g - h = 0 (mod z^k)
// ⇒ (g - h)^2 = 0 (mod z^(2 k))
// ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
// ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
// ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k)) (f g = 1 (mod z^d) より)
// ⇔ g = (2 - f h) h (mod z^(2 k))
// を得る.
//
// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.
Assert(!c.empty());
Assert(c[0] != 0);
MFPS g(c[0].inv());
for (int k = 1; k < d; k <<= 1) {
int len = max(min(2 * k, d), 1);
MFPS tmp(0, len);
rep(i, min(len, n)) tmp[i] = -c[i]; // -f
tmp *= g; // -f h
tmp.resize(len);
tmp[0] += 2; // 2 - f h
g *= tmp; // (2 - f h) h
g.resize(len);
}
return g;
}
MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
[[nodiscard]] MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }
// 余り付き除算
[[nodiscard]] MFPS quotient(const MFPS& g) const {
// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
//【方法】
// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
// f の次数は n-1, g の次数は m-1 とする.(n ≧ m)
// 従って q の次数は n-m,r の次数は m-2 となる.
//
// f^R で f の係数列を逆順にした多項式を表す.すなわち
// f^R(x) := f(1/x) x^(n-1)
// である.他の多項式も同様とする.
//
// 最初の式で x → 1/x と置き換えると,
// f(1/x) = g(1/x) q(1/x) + r(1/x)
// ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
// ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
// ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
// ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
// ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1))
// を得る.
//
// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
// q の次数は n-m であったから,q 自身を正しく求めることができた.
if (n < g.n) return MFPS();
return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
}
[[nodiscard]] MFPS reminder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
return (*this - this->quotient(g) * g).resize();
}
[[nodiscard]] pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
pair<MFPS, MFPS> res;
res.first = this->quotient(g);
res.second = (*this - res.first * g).resize();
return res;
}
// スパース積
MFPS& operator*=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
mint g0 = 0;
if (it0->first == 0) {
g0 = it0->second;
it0++;
}
// 後ろからインライン配る DP
repir(i, n - 1, 0) {
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] += c[i] * gj;
}
// 定数項は最後に配るか消去しないといけない.
c[i] *= g0;
}
return *this;
}
[[nodiscard]] MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }
// スパース商
MFPS& operator/=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
Assert(it0->first == 0 && it0->second != 0);
mint g0_inv = it0->second.inv();
it0++;
// 前からインライン配る DP(後ろに累積効果あり)
rep(i, n) {
// 定数項は最初に配らないといけない.
c[i] *= g0_inv;
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] -= c[i] * gj;
}
}
return *this;
}
[[nodiscard]] MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }
// 係数反転
[[nodiscard]] MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }
// 単項式
[[nodiscard]] static MFPS monomial(int d, mint coef = 1) {
MFPS mono(0, d + 1);
mono[d] = coef;
return mono;
}
// 不要な高次項の除去
MFPS& resize() {
// 最高次の係数が非 0 になるまで削る.
while (n > 0 && c[n - 1] == 0) {
c.pop_back();
n--;
}
return *this;
}
// x^d 以上の項を除去する.
MFPS& resize(int d) {
n = d;
c.resize(d);
return *this;
}
// 不定元への代入
[[nodiscard]] mint assign(const mint& x) const {
mint val = 0;
repir(i, n - 1, 0) val = val * x + c[i];
return val;
}
// 係数のシフト
MFPS& operator>>=(int d) {
n += d;
c.insert(c.begin(), d, 0);
return *this;
}
MFPS& operator<<=(int d) {
n -= d;
if (n <= 0) { c.clear(); n = 0; }
else c.erase(c.begin(), c.begin() + d);
return *this;
}
[[nodiscard]] MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
[[nodiscard]] MFPS operator<<(int d) const { return MFPS(*this) <<= d; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const MFPS& f) {
if (f.n == 0) os << 0;
else {
rep(i, f.n) {
os << f[i] << "z^" << i;
if (i < f.n - 1) os << " + ";
}
}
return os;
}
#endif
};
//【展開係数】O(n log n log N)
/*
* [z^N] f(z)/g(z) を返す.
*
* 制約 : deg f < deg g, g[0] != 0
*/
mint bostan_mori(MFPS f, MFPS g, ll N) {
// 参考 : http://q.c.titech.ac.jp/docs/progs/polynomial_division.html
// verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
//【方法】
// 分母分子に g(-z) を掛けることにより
// f(z) / g(z) = f(z) g(-z) / g(z) g(-z)
// を得る.ここで g(z) g(-z) は偶多項式なので
// g(z) g(-z) = e(z^2)
// と表すことができる.
//
// 分子について
// f(z) g(-z) = E(z^2) + z O(z^2)
// というように偶多項式部分と奇多項式部分に分けると,N が偶数のときは
// [z^N] f(z) g(-z) / g(z) g(-z)
// = [z^N] E(z^2) / e(z^2)
// = [z^(N/2)] E(z) / e(z)
// となり,N が奇数のときは
// [z^N] f(z) g(-z) / g(z) g(-z)
// = [z^N] z O(z^2) / e(z^2)
// = [z^((N-1)/2)] O(z) / e(z)
// となる.
//
// これを繰り返せば N を半分ずつに減らしていくことができる.
Assert(g.n >= 1 && g[0] != 0);
// f(z) = 0 のときは 0 を返す.
if (f.n == 0) return 0;
while (N > 0) {
// f2(z) = f(z) g(-z), g2(z) = g(z) g(-z) を求める.
MFPS f2, g2 = g;
rep(i, g2.n) if (i & 1) g2[i] *= -1;
f2 = f * g2;
g2 *= g;
// f3(z) = E(z) or O(z), g3(z) = e(z) を求める.
f.c.clear(); g.c.clear();
if (N & 1) rep(i, min<ll>(f2.n / 2, N / 2 + 1)) f.c.push_back(f2[2 * i + 1]);
else rep(i, min<ll>((f2.n + 1) / 2, N / 2 + 1)) f.c.push_back(f2[2 * i]);
f.n = sz(f.c);
rep(i, min<ll>((g2.n + 1) / 2, N / 2 + 1)) g.c.push_back(g2[2 * i]);
g.n = sz(g.c);
// N を半分にして次のステップに進む.
N /= 2;
}
// N = 0 になったら定数項を返す.
return f[0] / g[0];
}
//【線形漸化式】O(n log n log N)
/*
* 初項 a[0..n) と漸化式 a[i] = Σj∈[0..n) c[j] a[i-1-j] で定義される
* 数列 a について,a[N] の値を返す.
*
* 利用:【展開係数】
*/
mint linearly_recurrent_sequence(const vm& a, const vm& c, ll N) {
// verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
int n = sz(c);
if (n == 0) return 0;
MFPS A(a), C(c);
MFPS Dnm = 1 - (C >> 1);
MFPS Num = (Dnm * A).resize(n);
return bostan_mori(Num, Dnm, N);
}
//【線形漸化式の発見】O(n^2)
/*
* 与えられた数列 a[0..n) に対し,以下の等式を満たす c[0..m) で m を最小とするものを返す:
* a[i] = Σj∈[0..m) c[j] a[i-1-j] (∀i∈[m..n))
*/
vm berlekamp_massey(const vm& a) {
// 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
// verify : https://judge.yosupo.jp/problem/find_linear_recurrence
vm S(a), C{ 1 }, B{ 1 };
int N = sz(a), m = 1; mint b = 1;
rep(n, N) {
mint d = 0;
rep(i, sz(C)) d += C[i] * S[n - i];
if (d == 0) {
m++;
}
else if (2 * (sz(C) - 1) <= n) {
vm T(C);
mint coef = d * b.inv();
C.resize(max(sz(C), sz(B) + m));
rep(j, sz(B)) C[j + m] -= coef * B[j];
B = T;
b = d;
m = 1;
}
else {
mint coef = d * b.inv();
C.resize(max(sz(C), sz(B) + m));
rep(j, sz(B)) C[j + m] -= coef * B[j];
m++;
}
}
C.erase(C.begin());
rep(i, sz(C)) C[i] *= -1;
return C;
}
//【畳込み(素朴)】O(n m)
/*
* a[0..n) と b[0..m) を畳み込んだ数列 c[0..n+m-1) を返す.
* すなわち c[k] = Σ_(i+j=k) a[i] b[j] である.
*/
template <class T>
vector<T> naive_convolution(const vector<T>& a, const vector<T>& b) {
// verify : https://atcoder.jp/contests/abc214/tasks/abc214_g
int n = sz(a), m = sz(b);
if (n == 0 || m == 0) return vector<T>();
// c[k] = Σ_(i+j=k) a[i] b[j]
vector<T> c(n + m - 1);
if (n < m) {
rep(i, n) rep(j, m) c[i + j] += a[i] * b[j];
}
else {
rep(j, m) rep(i, n) c[i + j] += a[i] * b[j];
}
return c;
}
void zikken9() {
MFPS::set_conv(naive_convolution);
mint r = 1;
mint pow10 = 10;
vl p10(18 + 1);
repi(i, 0, 18) p10[i] = powi(10, i);
ll N = 1000; mint d = 10000;
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl;
rep(hoge, 18) {
using T = tuple<mint, mint, mint>;
auto f = [&](T x) {
auto [r, p, n] = x;
mint nn = n + 1;
mint np = p * p * d;
mint nr = r * (p * d + 1) + n * p;
return make_tuple(nr, np, nn);
};
int MOD = mint::mod();
vm a;
rep(k, 6) {
ll n_max = N + (k + 1) * MOD;
for (ll n = N + 1 + k * MOD; n <= n_max; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
a.push_back(r);
// dump("n:", n_max, "r:", r, "pow10:", pow10);
}
auto c = berlekamp_massey(a);
a.resize(sz(c));
// dump("a:", a); dump("c:", c);
ll D = (N * 10 - 1) - (N + 6 * MOD);
ll Q = D / MOD;
// dump("D:", D, "Q:", Q);
r = linearly_recurrent_sequence(a, c, Q + 5);
// dump("n:", N + 6 * MOD + Q * MOD, "r:", r, "pow10:", pow10);
for (ll n = N + 6 * MOD + Q * MOD + 1; n <= N * 10; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl;
N *= 10;
d *= 10;
}
exit(0);
}
/*
439
12
173
248
79
368
154
159
220
40
411
199
342
68
407
172
67
59
251
*/
constexpr ll MOD = mint::mod();
void zikken10() {
constexpr int W = 200;
MFPS::set_conv(naive_convolution);
mint r = 1;
mint pow10 = 10;
vl p10(18 + 1);
repi(i, 0, 18) p10[i] = powi(10, i);
vl ume;
ume.push_back(1);
ume.push_back(r.val());
ume.push_back(pow10.val());
ll N = 1000; mint d = 10000;
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
if (n % W == 0) {
ume.push_back(n);
ume.push_back(r.val());
ume.push_back(pow10.val());
}
}
cout << r << endl;
rep(hoge, 18) {
if (N == (ll)1e18) break;
vm a;
rep(k, 6) {
ll n_max = N + (k + 1) * MOD;
for (ll n = N + 1 + k * MOD; n <= n_max; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
if (n % W == 0) {
ume.push_back(n);
ume.push_back(r.val());
ume.push_back(pow10.val());
}
}
a.push_back(r);
// dump("n:", n_max, "r:", r, "pow10:", pow10);
}
auto c = berlekamp_massey(a);
a.resize(sz(c));
// dump("a:", a); dump("c:", c);
ll D = (N * 10 - 1) - (N + 6 * MOD);
ll Q = D / MOD;
// dump("D:", D, "Q:", Q);
r = linearly_recurrent_sequence(a, c, Q + 5);
// dump("n:", N + 6 * MOD + Q * MOD, "r:", r, "pow10:", pow10);
for (ll n = N + 6 * MOD + Q * MOD + 1; n <= N * 10; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
cout << r << endl;
N *= 10;
d *= 10;
ume.push_back(N);
ume.push_back(r.val());
ume.push_back(pow10.val());
}
cout << "vector<tuple<ll, mint, mint>> ume449 = {";
rep(i, sz(ume) / 3) {
cout << "{" << ume[3 * i] << "," << ume[3 * i + 1] << "," << ume[3 * i + 2] << "}";
cout << ",}"[i == sz(ume) / 3 - 1];
}
cout << ";\n";
exit(0);
}
vector<tuple<ll, int, int>> ume449 = { {1,1,10}, { 200,201,427 },{400,231,427},{600,3,427},{800,386,427},{1000,439,229},{1200,132,357},{1400,433,357},{1600,292,357},{1800,345,357},{2000,130,357},{2200,313,357},{2400,173,357},{2600,382,357},{2800,257,357},{3000,112,357},{3200,439,357},{3400,313,357},{3600,12,357},{10000,12,427},{10200,287,350},{10400,362,350},{10600,303,350},{10800,443,350},{11000,197,350},{11200,350,350},{11400,336,350},{11600,312,350},{11800,75,350},{12000,285,350},{12200,183,350},{12400,350,350},{12600,275,350},{100000,173,357},{100200,78,35},{100400,310,35},{100600,349,35},{100800,363,35},{101000,69,35},{101200,219,35},{101400,38,35},{101600,305,35},{101800,416,35},{102000,437,35},{102200,337,35},{102400,219,35},{102600,436,35},{1000000,248,350},{1000200,102,228},{1000400,215,228},{1000600,174,228},{1000800,355,228},{1001000,146,228},{1001200,161,228},{1001400,98,228},{1001600,439,228},{1001800,46,228},{1002000,93,228},{1002200,83,228},{1002400,161,228},{1002600,48,228},{10000000,79,35},{10000200,284,382},{10000400,430,382},{10000600,381,382},{10000800,444,382},{10001000,19,382},{10001200,245,382},{10001400,104,382},{10001600,183,382},{10001800,9,382},{10002000,328,382},{10002200,327,382},{10002400,245,382},{10002600,99,382},{100000000,368,228},{100000200,392,128},{100000400,227,128},{100000600,267,128},{100000800,408,128},{100001000,141,128},{100001200,433,128},{100001400,374,128},{100001600,337,128},{100001800,140,128},{100002000,127,128},{100002200,82,128},{100002400,433,128},{100002600,149,128},{1000000000,154,382},{1000000200,313,372},{1000000400,72,372},{1000000600,76,372},{1000000800,135,372},{1000001000,243,372},{1000001200,362,372},{1000001400,401,372},{1000001600,83,372},{1000001800,198,372},{1000002000,62,372},{1000002200,282,372},{1000002400,362,372},{1000002600,154,372},{10000000000,159,128},{10000000200,350,127},{10000000400,281,127},{10000000600,12,127},{10000000800,422,127},{10000001000,343,127},{10000001200,310,127},{10000001400,269,127},{10000001600,327,127},{10000001800,114,127},{10000002000,280,127},{10000002200,302,127},{10000002400,310,127},{10000002600,379,127},{100000000000,220,372},{100000000200,219,327},{100000000400,257,327},{100000000600,275,327},{100000000800,316,327},{100000001000,353,327},{100000001200,215,327},{100000001400,166,327},{100000001600,82,327},{100000001800,375,327},{100000002000,212,327},{100000002200,304,327},{100000002400,215,327},{100000002600,177,327},{1000000000000,40,127},{1000000000200,161,347},{1000000000400,75,347},{1000000000600,436,347},{1000000000800,36,347},{1000000001000,354,347},{1000000001200,430,347},{1000000001400,21,347},{1000000001600,282,347},{1000000001800,446,347},{1000000002000,295,347},{1000000002200,394,347},{1000000002400,430,347},{1000000002600,67,347},{10000000000000,411,327},{10000000000200,245,349},{10000000000400,416,349},{10000000000600,48,349},{10000000000800,8,349},{10000000001000,399,349},{10000000001200,227,349},{10000000001400,231,349},{10000000001600,302,349},{10000000001800,49,349},{10000000002000,438,349},{10000000002200,403,349},{10000000002400,227,349},{10000000002600,56,349},{100000000000000,199,347},{100000000000200,433,439},{100000000000400,46,439},{100000000000600,99,439},{100000000000800,95,439},{100000000001000,179,439},{100000000001200,72,439},{100000000001400,252,439},{100000000001600,304,439},{100000000001800,144,439},{100000000002000,138,439},{100000000002200,359,439},{100000000002400,72,439},{100000000002600,10,439},{1000000000000000,342,349},{1000000000000200,362,448},{1000000000000400,9,448},{1000000000000600,149,448},{1000000000000800,418,448},{1000000000001000,157,448},{1000000000001200,281,448},{1000000000001400,299,448},{1000000000001600,394,448},{1000000000001800,378,448},{1000000000002000,108,448},{1000000000002200,175,448},{1000000000002400,281,448},{1000000000002600,185,448},{10000000000000000,68,439},{10000000000000200,310,404},{10000000000000400,140,404},{10000000000000600,154,404},{10000000000000800,136,404},{10000000000001000,65,404},{10000000000001200,257,404},{10000000000001400,169,404},{10000000000001600,403,404},{10000000000001800,132,404},{10000000000002000,105,404},{10000000000002200,426,404},{10000000000002400,257,404},{10000000000002600,427,404},{100000000000000000,407,448},{100000000000000200,215,220},{100000000000000400,198,220},{100000000000000600,379,220},{100000000000000800,18,220},{100000000000001000,415,220},{100000000000001200,75,220},{100000000000001400,156,220},{100000000000001600,359,220},{100000000000001800,287,220},{100000000000002000,419,220},{100000000000002200,47,220},{100000000000002400,75,220},{100000000000002600,92,220},{1000000000000000000,345,126} };
//【切り上げ(余り指定)】O(1)
/*
* x 以上の整数で mod m で k に等しい最小のものを返す.
*/
template <class T>
T ceil_mod(T x, T m, T k) {
// verify: https://atcoder.jp/contests/abc334/tasks/abc334_b
Assert(m > 0);
return x + smod(k - x, m);
}
mint solve_449(ll N) {
constexpr int W = 200;
MFPS::set_conv(naive_convolution);
vl p10(18 + 1);
repi(i, 0, 18) p10[i] = powi(10, i);
int i = ubpos(ume449, make_tuple(N, INF, INF)) - 1;
auto [N0, r_, pow10_] = ume449[i];
if (N - N0 <= W) {
mint r = r_;
mint pow10 = pow10_;
for (ll n = N0 + 1; n <= N; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
return r;
}
else {
string s = to_string(N);
int l = sz(s);
ll N00 = ceil_mod<ll>(p10[l - 1] + W, MOD, N);
// dump("N00:", N00);
vm a;
rep(k, 4) {
ll N2 = N00 + MOD * k;
int i = ubpos(ume449, make_tuple(N2, INF, INF)) - 1;
auto [N0, r_, pow10_] = ume449[i];
dump(N0, N2);
mint r = r_;
mint pow10 = pow10_;
for (ll n = N0 + 1; n <= N2; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
a.push_back(r);
}
auto c = berlekamp_massey(a);
a.resize(sz(c));
dump("a:", a); dump("c:", c);
ll D = N - N00;
ll Q = D / MOD;
// dump("D:", D, "Q:", Q);
mint res = linearly_recurrent_sequence(a, c, Q);
return res;
}
return 0;
}
void umekomi() {
constexpr int W = 10000000;
mint r = 1;
mint pow10 = 10;
vl p10(18 + 1);
repi(i, 0, 18) p10[i] = powi(10, i);
vl ume;
ume.push_back(1);
ume.push_back(r.val());
ume.push_back(pow10.val());
ll N = 1000000000; mint d = 10000000000;
repi(n, 2, N) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
if (n % W == 0) {
ume.push_back(n);
ume.push_back(r.val());
ume.push_back(pow10.val());
}
if (n % 100000000 == 0) {
dump(n);
}
}
cout << r << endl;
rep(hoge, 18) {
if (N == (ll)1e18) break;
vm a;
int K = 4;
rep(k, K) {
ll n_max = N + (k + 1) * MOD;
for (ll n = N + 1 + k * MOD; n <= n_max; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
if (n % W == 0) {
ume.push_back(n);
ume.push_back(r.val());
ume.push_back(pow10.val());
}
if (n % 100000000 == 0) {
dump(n);
}
}
a.push_back(r);
// dump("n:", n_max, "r:", r, "pow10:", pow10);
}
auto c = berlekamp_massey(a);
a.resize(sz(c));
// dump("a:", a); dump("c:", c);
ll D = (N * 10 - 1) - (N + K * MOD);
ll Q = D / MOD;
// dump("D:", D, "Q:", Q);
r = linearly_recurrent_sequence(a, c, Q + K - 1);
// dump("n:", N + 6 * MOD + Q * MOD, "r:", r, "pow10:", pow10);
for (ll n = N + K * MOD + Q * MOD + 1; n <= N * 10; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
if (n % 100000000 == 0) {
dump(n);
}
}
cout << r << endl;
N *= 10;
d *= 10;
ume.push_back(N);
ume.push_back(r.val());
ume.push_back(pow10.val());
}
cout << "vector<tuple<ll, mint, mint>> ume = {";
rep(i, sz(ume) / 3) {
cout << "{" << ume[3 * i] << "," << ume[3 * i + 1] << "," << ume[3 * i + 2] << "}";
cout << ",}"[i == sz(ume) / 3 - 1];
}
cout << ";\n";
exit(0);
}
vector<tuple<ll, int, int>> ume = { {0,0,1},{10,918810723,788947331},{100,911934024,391561241},{1000,614239340,841319474},{10000,599244678,404761982} };
mint solve(ll N) {
constexpr int W = 10000000 * 10;
vl p10(18 + 1);
repi(i, 0, 18) p10[i] = powi(10, i);
int i = ubpos(ume, make_tuple(N / W, INF, INF)) - 1;
auto [N0, r_, pow10_] = ume[i];
N0 *= W;
if (N - N0 <= 2 * W) {
mint r = r_;
mint pow10 = pow10_;
for (ll n = N0 + 1; n <= N; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
return r;
}
else {
string s = to_string(N);
int l = sz(s);
ll N00 = ceil_mod<ll>(p10[l - 1] + W, MOD, N);
// dump("N00:", N00);
vm a;
rep(k, 4) {
ll N2 = N00 + MOD * k;
int i = ubpos(ume, make_tuple(N2, INF, INF)) - 1;
auto [N0, r_, pow10_] = ume[i];
N0 *= W;
dump(N0, N2);
mint r = r_;
mint pow10 = pow10_;
for (ll n = N0 + 1; n <= N2; n++) {
string s = to_string(n);
int l = sz(s);
ll p = p10[l];
r = r * (pow10 * p + 1) + n * pow10;
pow10 = pow10 * pow10 * p;
}
a.push_back(r);
}
auto c = berlekamp_massey(a);
a.resize(sz(c));
dump("a:", a); dump("c:", c);
ll D = N - N00;
ll Q = D / MOD;
// dump("D:", D, "Q:", Q);
mint res = linearly_recurrent_sequence(a, c, Q);
return res;
}
return 0;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
// 64 KB 超えたので間引く.
//cout << "vector<tuple<ll, int, int>> ume = {";
//rep(i, sz(ume)) {
// auto [N0, r, pow10] = ume[i];
// if (N0 % (10 * W) != 0) continue;
// cout << "{" << (N0 / W) << "," << r << "," << pow10 << "}";
// cout << ",}"[i == sz(ume) - 1];
//}
//cout << ";\n";
//return 0;
// p=769 = 3*2^8+1(φ(p-1)=3*2^e 型じゃないのでだめ)
//dump(TLE(1)); // 1
//dump(TLE(10)); // 695
//dump(TLE(100)); // 202
//dump(TLE(1000)); // 301
//dump(TLE(10000)); // 593
//dump(TLE(100000)); // 381
//dump(TLE(1000000)); // 191
// p=449 = 7*2^6+1
//dump(TLE(1)); // 1
//dump(TLE(10)); // 69
//dump(TLE(100)); // 255
//dump(TLE(1000)); // 439
//dump(TLE(10000)); // 12
//dump(TLE(100000)); // 173
//dump(TLE(1000000)); // 248
//dump(TLE(1449)); // 116
//dump(TLE(1898)); // 93
//dump(TLE(2347)); // 47
//dump(TLE(2796)); // 404
//dump(TLE(3245)); // 220
//dump(TLE(3694)); // 301
//dump(TLE(9980)); // 308
// exit(0);
dump("------");
// zikken10();
// umekomi();
ll n;
cin >> n;
dump(TLE(n));
cout << solve(n) << endl;
}
/*
n: 1449 r: 116
n: 1898 r: 93
n: 2347 r: 47
n: 2796 r: 404
n: 3245 r: 220
n: 3694 r: 301
a: 116 93
c: 3 447
D: 6305 Q: 14
*/