結果

問題 No.2995 The Ruler Sequence Concatenation
ユーザー 👑 rin204rin204
提出日時 2024-12-21 00:11:23
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 15 ms / 1,000 ms
コード長 31,451 bytes
コンパイル時間 4,501 ms
コンパイル使用メモリ 279,356 KB
実行使用メモリ 6,816 KB
最終ジャッジ日時 2024-12-21 00:11:29
合計ジャッジ時間 4,943 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 9
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #define INTERACTIVE
#include <bits/stdc++.h>
using namespace std;
namespace templates {
// type
using ll = long long;
using ull = unsigned long long;
using Pii = pair<int, int>;
using Pil = pair<int, ll>;
using Pli = pair<ll, int>;
using Pll = pair<ll, ll>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
// clang-format off
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
// clang-format on
// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on
// const value
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
const double PI = acos(-1);
// other macro
#if !defined(RIN__LOCAL) && !defined(INTERACTIVE)
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)
// function
vector<char> stoc(string &S) {
int n = S.size();
vector<char> ret(n);
for (int i = 0; i < n; i++) ret[i] = S[i];
return ret;
}
string ctos(vector<char> &S) {
int n = S.size();
string ret = "";
for (int i = 0; i < n; i++) ret += S[i];
return ret;
}
template <class T>
auto min(const T &a) {
return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
auto b = clamp(a, l, r);
return (a != b ? a = b, 1 : 0);
}
template <typename T>
T sum(vector<T> &A) {
T tot = 0;
for (auto a : A) tot += a;
return tot;
}
template <typename T>
vector<T> compression(vector<T> X) {
sort(all(X));
X.erase(unique(all(X)), X.end());
return X;
}
// input and output
namespace io {
// __int128_t
std::istream &operator>>(std::istream &is, __int128_t &value) {
std::string str;
is >> str;
value = 0;
int sign = 1;
for (size_t i = 0; i < str.size(); i++) {
if (i == 0 && str[i] == '-') {
sign = -1;
continue;
}
value = value * 10 + str[i] - '0';
}
value *= sign;
return is;
}
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << ' ';
}
return os;
}
// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
is >> A.first >> A.second;
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
os << A.first << ' ' << A.second;
return os;
}
// vector<pair<S, T>>
template <typename S, typename T>
istream &operator>>(istream &is, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
is >> A[i];
}
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// tuple
template <typename T, size_t N>
struct TuplePrint {
static ostream &print(ostream &os, const T &t) {
TuplePrint<T, N - 1>::print(os, t);
os << ' ' << get<N - 1>(t);
return os;
}
};
template <typename T>
struct TuplePrint<T, 1> {
static ostream &print(ostream &os, const T &t) {
os << get<0>(t);
return os;
}
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
return os;
}
// io functions
void FLUSH() {
cout << flush;
}
void print() {
cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(std::forward<Tail>(tail)...);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
int n = A.size();
for (int i = 0; i < n; i++) {
cout << A[i];
if (i != n - 1) cout << sep;
}
cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
cout << A << end;
}
template <typename T>
void prispa(T A) {
priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
if (f)
print(A);
else
print(B);
return f;
}
template <class... T>
void inp(T &...a) {
(cin >> ... >> a);
}
} // namespace io
using namespace io;
// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<int>> edges(n, vector<int>());
for (int i = 0; i < m; i++) {
INT(u, v);
u -= indexed;
v -= indexed;
edges[u].push_back(v);
if (!direct) edges[v].push_back(u);
}
return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
return read_edges(n, n - 1, false, indexed);
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
for (int i = 0; i < m; i++) {
INT(u, v);
T w;
inp(w);
u -= indexed;
v -= indexed;
edges[u].push_back({v, w});
if (!direct) edges[v].push_back({u, w});
}
return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
return read_wedges<T>(n, n - 1, false, indexed);
}
// yes / no
namespace yesno {
// yes
inline bool yes(bool f = true) {
cout << (f ? "yes" : "no") << endl;
return f;
}
inline bool Yes(bool f = true) {
cout << (f ? "Yes" : "No") << endl;
return f;
}
inline bool YES(bool f = true) {
cout << (f ? "YES" : "NO") << endl;
return f;
}
// no
inline bool no(bool f = true) {
cout << (!f ? "yes" : "no") << endl;
return f;
}
inline bool No(bool f = true) {
cout << (!f ? "Yes" : "No") << endl;
return f;
}
inline bool NO(bool f = true) {
cout << (!f ? "YES" : "NO") << endl;
return f;
}
// possible
inline bool possible(bool f = true) {
cout << (f ? "possible" : "impossible") << endl;
return f;
}
inline bool Possible(bool f = true) {
cout << (f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool POSSIBLE(bool f = true) {
cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// impossible
inline bool impossible(bool f = true) {
cout << (!f ? "possible" : "impossible") << endl;
return f;
}
inline bool Impossible(bool f = true) {
cout << (!f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool IMPOSSIBLE(bool f = true) {
cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// Alice Bob
inline bool Alice(bool f = true) {
cout << (f ? "Alice" : "Bob") << endl;
return f;
}
inline bool Bob(bool f = true) {
cout << (f ? "Bob" : "Alice") << endl;
return f;
}
// Takahashi Aoki
inline bool Takahashi(bool f = true) {
cout << (f ? "Takahashi" : "Aoki") << endl;
return f;
}
inline bool Aoki(bool f = true) {
cout << (f ? "Aoki" : "Takahashi") << endl;
return f;
}
} // namespace yesno
using namespace yesno;
} // namespace templates
using namespace templates;
template <int MOD>
struct Modint {
int x;
Modint() : x(0) {}
Modint(int64_t y) {
if (y >= 0)
x = y % MOD;
else
x = (y % MOD + MOD) % MOD;
}
Modint &operator+=(const Modint &p) {
x += p.x;
if (x >= MOD) x -= MOD;
return *this;
}
Modint &operator-=(const Modint &p) {
x -= p.x;
if (x < 0) x += MOD;
return *this;
}
Modint &operator*=(const Modint &p) {
x = int(1LL * x * p.x % MOD);
return *this;
}
Modint &operator/=(const Modint &p) {
*this *= p.inverse();
return *this;
}
Modint &operator%=(const Modint &p) {
assert(p.x == 0);
return *this;
}
Modint operator-() const {
return Modint(-x);
}
Modint &operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Modint &operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Modint operator++(int) {
Modint result = *this;
++*this;
return result;
}
Modint operator--(int) {
Modint result = *this;
--*this;
return result;
}
friend Modint operator+(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) += rhs;
}
friend Modint operator-(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) -= rhs;
}
friend Modint operator*(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) *= rhs;
}
friend Modint operator/(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) /= rhs;
}
friend Modint operator%(const Modint &lhs, const Modint &rhs) {
assert(rhs.x == 0);
return Modint(lhs);
}
bool operator==(const Modint &p) const {
return x == p.x;
}
bool operator!=(const Modint &p) const {
return x != p.x;
}
bool operator<(const Modint &rhs) const {
return x < rhs.x;
}
bool operator<=(const Modint &rhs) const {
return x <= rhs.x;
}
bool operator>(const Modint &rhs) const {
return x > rhs.x;
}
bool operator>=(const Modint &rhs) const {
return x >= rhs.x;
}
Modint inverse() const {
int a = x, b = MOD, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
u -= t * v;
std::swap(a, b);
std::swap(u, v);
}
return Modint(u);
}
Modint pow(int64_t k) const {
Modint ret(1);
Modint y(x);
while (k > 0) {
if (k & 1) ret *= y;
y *= y;
k >>= 1;
}
return ret;
}
std::pair<int, int> to_frac(int max_n = 1000) const {
int y = x;
for (int i = 1; i <= max_n; i++) {
if (y <= max_n) {
return {y, i};
} else if (MOD - y <= max_n) {
return {-(MOD - y), i};
}
y = (y + x) % MOD;
}
return {-1, -1};
}
friend std::ostream &operator<<(std::ostream &os, const Modint &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, Modint &p) {
int64_t y;
is >> y;
p = Modint<MOD>(y);
return (is);
}
static int get_mod() {
return MOD;
}
};
struct Arbitrary_Modint {
int x;
static int MOD;
static void set_mod(int mod) {
MOD = mod;
}
Arbitrary_Modint() : x(0) {}
Arbitrary_Modint(int64_t y) {
if (y >= 0)
x = y % MOD;
else
x = (y % MOD + MOD) % MOD;
}
Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
x += p.x;
if (x >= MOD) x -= MOD;
return *this;
}
Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
x -= p.x;
if (x < 0) x += MOD;
return *this;
}
Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
x = int(1LL * x * p.x % MOD);
return *this;
}
Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
*this *= p.inverse();
return *this;
}
Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
assert(p.x == 0);
return *this;
}
Arbitrary_Modint operator-() const {
return Arbitrary_Modint(-x);
}
Arbitrary_Modint &operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Arbitrary_Modint &operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Arbitrary_Modint operator++(int) {
Arbitrary_Modint result = *this;
++*this;
return result;
}
Arbitrary_Modint operator--(int) {
Arbitrary_Modint result = *this;
--*this;
return result;
}
friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) += rhs;
}
friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) -= rhs;
}
friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) *= rhs;
}
friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) /= rhs;
}
friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
assert(rhs.x == 0);
return Arbitrary_Modint(lhs);
}
bool operator==(const Arbitrary_Modint &p) const {
return x == p.x;
}
bool operator!=(const Arbitrary_Modint &p) const {
return x != p.x;
}
bool operator<(const Arbitrary_Modint &rhs) {
return x < rhs.x;
}
bool operator<=(const Arbitrary_Modint &rhs) {
return x <= rhs.x;
}
bool operator>(const Arbitrary_Modint &rhs) {
return x > rhs.x;
}
bool operator>=(const Arbitrary_Modint &rhs) {
return x >= rhs.x;
}
Arbitrary_Modint inverse() const {
int a = x, b = MOD, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
u -= t * v;
std::swap(a, b);
std::swap(u, v);
}
return Arbitrary_Modint(u);
}
Arbitrary_Modint pow(int64_t k) const {
Arbitrary_Modint ret(1);
Arbitrary_Modint y(x);
while (k > 0) {
if (k & 1) ret *= y;
y *= y;
k >>= 1;
}
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const Arbitrary_Modint &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, Arbitrary_Modint &p) {
int64_t y;
is >> y;
p = Arbitrary_Modint(y);
return (is);
}
static int get_mod() {
return MOD;
}
};
int Arbitrary_Modint::MOD = 998244353;
using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint = Arbitrary_Modint;
using mint = modint9;
template <typename T>
T modinv(T a, T MOD) {
T b = MOD;
T u = 1;
T v = 0;
while (b > 0) {
T t = a / b;
a -= t * b;
u -= t * v;
std::swap(a, b);
std::swap(u, v);
}
if (a != 1) return -1;
if (u < 0) u += MOD;
return u;
}
template <typename T>
std::vector<T> berlekampMessy(const std::vector<T> &A) {
int n = A.size();
std::vector<T> B(1, -1);
std::vector<T> C(1, -1);
T y = 1;
for (int j = 1; j <= n; j++) {
int l = C.size();
int m = B.size();
T x = 0;
for (int i = 0; i < l; i++) {
x += C[i] * A[j - l + i];
}
B.push_back(0);
m++;
if (x == 0) continue;
T freq = x / y;
if (l < m) {
std::vector<T> D(m - l, T(0));
D.insert(D.end(), C.begin(), C.end());
for (int i = 0; i < m; i++) {
D[m - 1 - i] -= freq * B[m - 1 - i];
}
std::swap(B, C);
std::swap(C, D);
y = x;
} else {
for (int i = 0; i < m; i++) {
C[l - 1 - i] -= freq * B[m - 1 - i];
}
}
}
std::reverse(C.begin(), C.end());
for (auto &c : C) c = -c;
return C;
}
/*
return x^n mod f
: f_reversed: f(x)(, f_reversed[0] = 1)
*/
template <typename T>
std::vector<T> monomial_mod_polynomial(long long n, const std::vector<T> &f_reversed) {
assert(!f_reversed.empty() and f_reversed[0] == 1);
int K = f_reversed.size() - 1;
if (!K) return {};
int D = 64 - __builtin_clzll(n);
std::vector<T> ret(K, 0);
ret[0] = 1;
auto self_conv = [](std::vector<T> &x) -> std::vector<T> {
int d = x.size();
std::vector<T> ret(2 * d - 1);
for (int i = 0; i < d; i++) {
ret[2 * i] += x[i] * x[i];
for (int j = 0; j < i; j++) ret[i + j] += 2 * x[i] * x[j];
}
return ret;
};
for (int d = D - 1; d >= 0; d--) {
ret = self_conv(ret);
for (int i = 2 * K - 2; i >= K; i--) {
for (int j = 1; j <= K; j++) {
ret[i - j] -= ret[i] * f_reversed[j];
}
}
ret.resize(K);
if ((n >> d) & 1) {
std::vector<T> c(K);
c[0] = -ret[K - 1] * f_reversed[K];
for (int i = 1; i < K; i++) {
c[i] = ret[i - 1] - ret[K - 1] * f_reversed[K - i];
}
ret = c;
}
}
return ret;
}
template <typename T>
T guess_kth_term(const std::vector<T> &A, long long k, bool debug = false) {
assert(k >= 0);
if (k < int(A.size())) return A[k];
const auto F = berlekampMessy(A);
if (debug) {
std::cerr << "F.size() = " << F.size() << "\n" << std::flush;
}
const auto G = monomial_mod_polynomial<T>(k, F);
T ret = 0;
for (size_t i = 0; i < G.size(); i++) ret += G[i] * A[i];
return ret;
}
using mint2 = Modint<998244352>;
template <typename type>
struct Matrix {
int n, m;
std::vector<std::vector<type>> A;
Matrix() = default;
Matrix(int n, int m) : n(n), m(m), A(n, std::vector<type>(m, 0)) {}
Matrix(int n) : n(n), m(n), A(n, std::vector<type>(n, 0)) {}
Matrix(std::vector<std::vector<type>> A) : n(A.size()), m(A[0].size()), A(A) {}
inline const std::vector<type> &operator[](int k) const {
return (A.at(k));
}
inline std::vector<type> &operator[](int k) {
return (A.at(k));
}
Matrix T() {
Matrix<type> B(m, n);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++) {
B.A[i][j] = A[j][i];
}
return B;
}
Matrix &operator=(const std::vector<std::vector<type>> &B) {
n = B.size();
m = B[0].size();
A = B;
return *this;
}
Matrix &operator+=(const Matrix &B) {
assert(n == int(B.A.size()));
assert(m == int(B.A[0].size()));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
this->A[i][j] += B[i][j];
}
return *this;
}
Matrix &operator-=(const Matrix &B) {
assert(n == int(B.A.size()));
assert(m == int(B.A[0].size()));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
this->A[i][j] -= B[i][j];
}
return *this;
}
Matrix &operator*=(const Matrix &B) {
int k = B[0].size();
assert(m == int(B.A.size()));
std::vector<std::vector<type>> C(n, std::vector<type>(k, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < k; j++) {
for (int l = 0; l < m; l++) {
C[i][j] += this->A[i][l] * B[l][j];
}
}
std::swap(this->A, C);
this->m = k;
return *this;
}
std::vector<type> operator*(const std::vector<type> &x) {
assert(m == int(x.size()));
std::vector<type> ret(n, 0);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) ret[i] += this->A[i][j] * x[j];
return ret;
}
template <typename Ti>
Matrix &operator*=(const Ti x) {
for (auto &row : A) {
for (auto &e : row) {
e *= x;
}
}
return *this;
}
Matrix operator-() {
return (Matrix(*this) *= -1);
}
Matrix operator+(const Matrix &B) const {
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const {
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const {
return (Matrix(*this) *= B);
}
type det() {
auto arr = A;
assert(n == m);
type ret = 1;
for (int i = 0; i < n; i++) {
if (arr[i][i] == 0) {
bool ng = true;
for (int j = i + 1; j < n; j++) {
if (arr[j][i] == 0) continue;
swap(arr[i], arr[j]);
ret *= -1;
ng = false;
break;
}
if (ng) return 0;
}
ret *= arr[i][i];
type inv = type(1) / arr[i][i];
for (int j = i; j < n; j++) arr[i][j] *= inv;
for (int j = i + 1; j < n; j++) {
type x = arr[j][i];
for (int k = i; k < n; k++) {
arr[j][k] -= arr[i][k] * x;
}
}
}
return ret;
}
void I() {
assert(n == m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (i == j)
A[i][j] = 1;
else
A[i][j] = 0;
}
}
}
Matrix<type> inv() {
assert(n == m);
Matrix<type> ret(n);
ret.I();
auto &B = ret.A;
auto arr = A;
for (int j = 0; j < n; j++) {
int ii = -1;
for (int i = j; i < n; i++) {
if (arr[i][j] != 0) {
ii = i;
break;
}
}
if (ii == -1) {
return {};
}
swap(arr[j], arr[ii]);
swap(B[j], B[ii]);
ii = j;
type inv = type(1) / arr[ii][j];
for (int jj = 0; jj < n; jj++) {
B[ii][jj] *= inv;
arr[ii][jj] *= inv;
}
for (int i = 0; i < n; i++) {
if (i == ii) continue;
type t = arr[i][j];
for (int jj = 0; jj < n; jj++) {
arr[i][jj] -= arr[ii][jj] * t;
B[i][jj] -= B[ii][jj] * t;
}
}
}
return ret;
}
int choose_pivot(int h, int c) const {
for (int j = h; j < n; j++) {
if (A[j][c] != type(0)) return j;
}
return -1;
}
int rank() const {
auto arr = *this;
if (arr.n < arr.m) {
arr = arr.T();
}
int ret = 0;
for (int i = 0; i < arr.m; i++) {
int j = arr.choose_pivot(ret, i);
if (j == -1) continue;
swap(arr[ret], arr[j]);
type inv = type(1) / arr[ret][i];
for (int k = i; k < arr.m; k++) {
arr[ret][k] *= inv;
}
for (int j = ret + 1; j < arr.n; j++) {
type x = arr[j][i];
for (int k = i; k < arr.m; k++) {
arr[j][k] -= arr[ret][k] * x;
}
}
ret++;
}
return ret;
}
Matrix<type> pow(long long k) {
assert(n == m);
Matrix<type> B(n);
B.I();
Matrix<type> A(*this);
while (k) {
if (k & 1) B *= A;
A *= A;
k >>= 1;
}
return B;
}
friend std::ostream &operator<<(std::ostream &os, const Matrix &p) {
for (int i = 0; i < p.n; i++) {
for (auto &x : p.A[i]) {
os << x << " ";
}
if (i != p.n - 1) {
os << "\n";
}
}
return (os);
}
friend std::istream &operator>>(std::istream &is, Matrix &p) {
for (auto &row : p.A) {
for (auto &x : row) {
is >> x;
}
}
return (is);
}
};
template <typename T>
Matrix<T> Matrix_exp(Matrix<T> A, Matrix<T> B, long long k) {
assert(A.A.size() == A[0].size());
assert(A.A.size() == B.A.size());
assert(B.A[0].size() == 1u);
while (k > 0) {
if (k & 1) B = A * B;
A *= A;
k >>= 1;
}
return B;
}
template <typename T>
std::vector<T> Matrix_exp(Matrix<T> A, std::vector<T> B, long long k) {
assert(A.A.size() == A[0].size());
assert(A.A.size() == B.size());
while (k > 0) {
if (k & 1) {
B = A * B;
}
A *= A;
k >>= 1;
}
return B;
}
void solve() {
LL(n);
if (n <= 1000) {
mint now = 1;
int length = 1;
fori(i, 2, n + 1) {
auto x = i;
int le = 0;
while (x) {
x /= 10;
le++;
}
mint nex = now;
nex += i * mint(10).pow(length);
nex += now * mint(10).pow(length + le);
length = 2 * length + le;
length %= 998244352;
now = nex;
}
print(now);
return;
}
mint now = 1;
int length = 1;
fori(i, 2, 1000) {
auto x = i;
int le = 0;
while (x) {
x /= 10;
le++;
}
mint nex = now;
nex += i * mint(10).pow(length);
nex += now * mint(10).pow(length + le);
length = 2 * length + le;
length %= 998244352;
now = nex;
}
ll x = 1000;
n++;
int le = 4;
while (x < n) {
ll y = x * 10;
chmin(y, n);
vec(mint, A, 500);
mint2 bef_length = length;
fori(i, x, x + 500) {
mint nex = now;
nex += i * mint(10).pow(length);
nex += now * mint(10).pow(length + le);
length = 2 * length + le;
length %= 998244352;
now = nex;
A[i - x] = now;
}
now = guess_kth_term(A, y - x - 1, true);
Matrix<mint2> B({
{2, le},
{0, 1},
});
B = B.pow(y - x);
length = (B[0][0] * bef_length + B[0][1]).x;
le++;
x = y;
}
print(now);
}
int main() {
#ifndef INTERACTIVE
std::cin.tie(0)->sync_with_stdio(0);
#endif
// std::cout << std::fixed << std::setprecision(12);
int t;
t = 1;
// std::cin >> t;
while (t--) solve();
return 0;
}
// // #pragma GCC target("avx2")
// // #pragma GCC optimize("O3")
// // #pragma GCC optimize("unroll-loops")
// // #define INTERACTIVE
//
// #include "kyopro-cpp/template.hpp"
//
// #include "misc/Modint.hpp"
// using mint = modint9;
// #include "polynomial/guess_kth_term.hpp"
// using mint2 = Modint<998244352>;
// #include "matrix/Matrix_exp.hpp"
//
// void solve() {
// LL(n);
//
// if (n <= 1000) {
// mint now = 1;
// int length = 1;
// fori(i, 2, n + 1) {
// auto x = i;
// int le = 0;
// while (x) {
// x /= 10;
// le++;
// }
//
// mint nex = now;
// nex += i * mint(10).pow(length);
// nex += now * mint(10).pow(length + le);
// length = 2 * length + le;
// length %= 998244352;
//
// now = nex;
// }
//
// print(now);
// return;
// }
//
// mint now = 1;
// int length = 1;
// fori(i, 2, 1000) {
// auto x = i;
// int le = 0;
// while (x) {
// x /= 10;
// le++;
// }
//
// mint nex = now;
// nex += i * mint(10).pow(length);
// nex += now * mint(10).pow(length + le);
// length = 2 * length + le;
// length %= 998244352;
//
// now = nex;
// }
//
// ll x = 1000;
// n++;
// int le = 4;
// while (x < n) {
// ll y = x * 10;
// chmin(y, n);
//
// vec(mint, A, 500);
// mint2 bef_length = length;
// fori(i, x, x + 500) {
// mint nex = now;
// nex += i * mint(10).pow(length);
// nex += now * mint(10).pow(length + le);
// length = 2 * length + le;
// length %= 998244352;
//
// now = nex;
// A[i - x] = now;
// }
//
// now = guess_kth_term(A, y - x - 1, true);
//
// Matrix<mint2> B({
// {2, le},
// {0, 1},
// });
// B = B.pow(y - x);
// length = (B[0][0] * bef_length + B[0][1]).x;
//
// le++;
// x = y;
// }
// print(now);
// }
//
// int main() {
// #ifndef INTERACTIVE
// std::cin.tie(0)->sync_with_stdio(0);
// #endif
// // std::cout << std::fixed << std::setprecision(12);
// int t;
// t = 1;
// // std::cin >> t;
// while (t--) solve();
// return 0;
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0