結果
問題 | No.2995 The Ruler Sequence Concatenation |
ユーザー | 👑 rin204 |
提出日時 | 2024-12-21 00:11:23 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 15 ms / 1,000 ms |
コード長 | 31,451 bytes |
コンパイル時間 | 4,501 ms |
コンパイル使用メモリ | 279,356 KB |
実行使用メモリ | 6,816 KB |
最終ジャッジ日時 | 2024-12-21 00:11:29 |
合計ジャッジ時間 | 4,943 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 3 ms
6,816 KB |
testcase_04 | AC | 5 ms
5,248 KB |
testcase_05 | AC | 6 ms
5,248 KB |
testcase_06 | AC | 7 ms
5,248 KB |
testcase_07 | AC | 10 ms
5,248 KB |
testcase_08 | AC | 11 ms
5,248 KB |
testcase_09 | AC | 12 ms
5,248 KB |
testcase_10 | AC | 15 ms
5,248 KB |
ソースコード
// #pragma GCC target("avx2") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") // #define INTERACTIVE #include <bits/stdc++.h> using namespace std; namespace templates { // type using ll = long long; using ull = unsigned long long; using Pii = pair<int, int>; using Pil = pair<int, ll>; using Pli = pair<ll, int>; using Pll = pair<ll, ll>; template <class T> using pq = priority_queue<T>; template <class T> using qp = priority_queue<T, vector<T>, greater<T>>; // clang-format off #define vec(T, A, ...) vector<T> A(__VA_ARGS__); #define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__)); #define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__))); // clang-format on // for loop #define fori1(a) for (ll _ = 0; _ < (a); _++) #define fori2(i, a) for (ll i = 0; i < (a); i++) #define fori3(i, a, b) for (ll i = (a); i < (b); i++) #define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c)) #define overload4(a, b, c, d, e, ...) e #define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__) // declare and input // clang-format off #define INT(...) int __VA_ARGS__; inp(__VA_ARGS__); #define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__); #define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__); #define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__); #define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___); #define VEC(T, A, n) vector<T> A(n); inp(A); #define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A); // clang-format on // const value const ll MOD1 = 1000000007; const ll MOD9 = 998244353; const double PI = acos(-1); // other macro #if !defined(RIN__LOCAL) && !defined(INTERACTIVE) #define endl "\n" #endif #define spa ' ' #define len(A) ll(A.size()) #define all(A) begin(A), end(A) // function vector<char> stoc(string &S) { int n = S.size(); vector<char> ret(n); for (int i = 0; i < n; i++) ret[i] = S[i]; return ret; } string ctos(vector<char> &S) { int n = S.size(); string ret = ""; for (int i = 0; i < n; i++) ret += S[i]; return ret; } template <class T> auto min(const T &a) { return *min_element(all(a)); } template <class T> auto max(const T &a) { return *max_element(all(a)); } template <class T, class S> auto clamp(T &a, const S &l, const S &r) { return (a > r ? r : a < l ? l : a); } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } template <class T, class S> inline bool chclamp(T &a, const S &l, const S &r) { auto b = clamp(a, l, r); return (a != b ? a = b, 1 : 0); } template <typename T> T sum(vector<T> &A) { T tot = 0; for (auto a : A) tot += a; return tot; } template <typename T> vector<T> compression(vector<T> X) { sort(all(X)); X.erase(unique(all(X)), X.end()); return X; } // input and output namespace io { // __int128_t std::istream &operator>>(std::istream &is, __int128_t &value) { std::string str; is >> str; value = 0; int sign = 1; for (size_t i = 0; i < str.size(); i++) { if (i == 0 && str[i] == '-') { sign = -1; continue; } value = value * 10 + str[i] - '0'; } value *= sign; return is; } std::ostream &operator<<(std::ostream &dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char *d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // vector<T> template <typename T> istream &operator>>(istream &is, vector<T> &A) { for (auto &a : A) is >> a; return is; } template <typename T> ostream &operator<<(ostream &os, vector<T> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << ' '; } return os; } // vector<vector<T>> template <typename T> istream &operator>>(istream &is, vector<vector<T>> &A) { for (auto &a : A) is >> a; return is; } template <typename T> ostream &operator<<(ostream &os, vector<vector<T>> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // pair<S, T> template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &A) { is >> A.first >> A.second; return is; } template <typename S, typename T> ostream &operator<<(ostream &os, pair<S, T> &A) { os << A.first << ' ' << A.second; return os; } // vector<pair<S, T>> template <typename S, typename T> istream &operator>>(istream &is, vector<pair<S, T>> &A) { for (size_t i = 0; i < A.size(); i++) { is >> A[i]; } return is; } template <typename S, typename T> ostream &operator<<(ostream &os, vector<pair<S, T>> &A) { for (size_t i = 0; i < A.size(); i++) { os << A[i]; if (i != A.size() - 1) os << endl; } return os; } // tuple template <typename T, size_t N> struct TuplePrint { static ostream &print(ostream &os, const T &t) { TuplePrint<T, N - 1>::print(os, t); os << ' ' << get<N - 1>(t); return os; } }; template <typename T> struct TuplePrint<T, 1> { static ostream &print(ostream &os, const T &t) { os << get<0>(t); return os; } }; template <typename... Args> ostream &operator<<(ostream &os, const tuple<Args...> &t) { TuplePrint<decltype(t), sizeof...(Args)>::print(os, t); return os; } // io functions void FLUSH() { cout << flush; } void print() { cout << endl; } template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) { cout << head; if (sizeof...(Tail)) cout << spa; print(std::forward<Tail>(tail)...); } template <typename T, typename S> void prisep(vector<T> &A, S sep) { int n = A.size(); for (int i = 0; i < n; i++) { cout << A[i]; if (i != n - 1) cout << sep; } cout << endl; } template <typename T, typename S> void priend(T A, S end) { cout << A << end; } template <typename T> void prispa(T A) { priend(A, spa); } template <typename T, typename S> bool printif(bool f, T A, S B) { if (f) print(A); else print(B); return f; } template <class... T> void inp(T &...a) { (cin >> ... >> a); } } // namespace io using namespace io; // read graph vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) { vector<vector<int>> edges(n, vector<int>()); for (int i = 0; i < m; i++) { INT(u, v); u -= indexed; v -= indexed; edges[u].push_back(v); if (!direct) edges[v].push_back(u); } return edges; } vector<vector<int>> read_tree(int n, int indexed = 1) { return read_edges(n, n - 1, false, indexed); } template <typename T = long long> vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) { vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>()); for (int i = 0; i < m; i++) { INT(u, v); T w; inp(w); u -= indexed; v -= indexed; edges[u].push_back({v, w}); if (!direct) edges[v].push_back({u, w}); } return edges; } template <typename T = long long> vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) { return read_wedges<T>(n, n - 1, false, indexed); } // yes / no namespace yesno { // yes inline bool yes(bool f = true) { cout << (f ? "yes" : "no") << endl; return f; } inline bool Yes(bool f = true) { cout << (f ? "Yes" : "No") << endl; return f; } inline bool YES(bool f = true) { cout << (f ? "YES" : "NO") << endl; return f; } // no inline bool no(bool f = true) { cout << (!f ? "yes" : "no") << endl; return f; } inline bool No(bool f = true) { cout << (!f ? "Yes" : "No") << endl; return f; } inline bool NO(bool f = true) { cout << (!f ? "YES" : "NO") << endl; return f; } // possible inline bool possible(bool f = true) { cout << (f ? "possible" : "impossible") << endl; return f; } inline bool Possible(bool f = true) { cout << (f ? "Possible" : "Impossible") << endl; return f; } inline bool POSSIBLE(bool f = true) { cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // impossible inline bool impossible(bool f = true) { cout << (!f ? "possible" : "impossible") << endl; return f; } inline bool Impossible(bool f = true) { cout << (!f ? "Possible" : "Impossible") << endl; return f; } inline bool IMPOSSIBLE(bool f = true) { cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl; return f; } // Alice Bob inline bool Alice(bool f = true) { cout << (f ? "Alice" : "Bob") << endl; return f; } inline bool Bob(bool f = true) { cout << (f ? "Bob" : "Alice") << endl; return f; } // Takahashi Aoki inline bool Takahashi(bool f = true) { cout << (f ? "Takahashi" : "Aoki") << endl; return f; } inline bool Aoki(bool f = true) { cout << (f ? "Aoki" : "Takahashi") << endl; return f; } } // namespace yesno using namespace yesno; } // namespace templates using namespace templates; template <int MOD> struct Modint { int x; Modint() : x(0) {} Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Modint &operator+=(const Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Modint &operator-=(const Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Modint &operator*=(const Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Modint &operator/=(const Modint &p) { *this *= p.inverse(); return *this; } Modint &operator%=(const Modint &p) { assert(p.x == 0); return *this; } Modint operator-() const { return Modint(-x); } Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Modint operator++(int) { Modint result = *this; ++*this; return result; } Modint operator--(int) { Modint result = *this; --*this; return result; } friend Modint operator+(const Modint &lhs, const Modint &rhs) { return Modint(lhs) += rhs; } friend Modint operator-(const Modint &lhs, const Modint &rhs) { return Modint(lhs) -= rhs; } friend Modint operator*(const Modint &lhs, const Modint &rhs) { return Modint(lhs) *= rhs; } friend Modint operator/(const Modint &lhs, const Modint &rhs) { return Modint(lhs) /= rhs; } friend Modint operator%(const Modint &lhs, const Modint &rhs) { assert(rhs.x == 0); return Modint(lhs); } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const { return x != p.x; } bool operator<(const Modint &rhs) const { return x < rhs.x; } bool operator<=(const Modint &rhs) const { return x <= rhs.x; } bool operator>(const Modint &rhs) const { return x > rhs.x; } bool operator>=(const Modint &rhs) const { return x >= rhs.x; } Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; std::swap(a, b); std::swap(u, v); } return Modint(u); } Modint pow(int64_t k) const { Modint ret(1); Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } std::pair<int, int> to_frac(int max_n = 1000) const { int y = x; for (int i = 1; i <= max_n; i++) { if (y <= max_n) { return {y, i}; } else if (MOD - y <= max_n) { return {-(MOD - y), i}; } y = (y + x) % MOD; } return {-1, -1}; } friend std::ostream &operator<<(std::ostream &os, const Modint &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, Modint &p) { int64_t y; is >> y; p = Modint<MOD>(y); return (is); } static int get_mod() { return MOD; } }; struct Arbitrary_Modint { int x; static int MOD; static void set_mod(int mod) { MOD = mod; } Arbitrary_Modint() : x(0) {} Arbitrary_Modint(int64_t y) { if (y >= 0) x = y % MOD; else x = (y % MOD + MOD) % MOD; } Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) { x += p.x; if (x >= MOD) x -= MOD; return *this; } Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) { x -= p.x; if (x < 0) x += MOD; return *this; } Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) { x = int(1LL * x * p.x % MOD); return *this; } Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) { *this *= p.inverse(); return *this; } Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) { assert(p.x == 0); return *this; } Arbitrary_Modint operator-() const { return Arbitrary_Modint(-x); } Arbitrary_Modint &operator++() { x++; if (x == MOD) x = 0; return *this; } Arbitrary_Modint &operator--() { if (x == 0) x = MOD; x--; return *this; } Arbitrary_Modint operator++(int) { Arbitrary_Modint result = *this; ++*this; return result; } Arbitrary_Modint operator--(int) { Arbitrary_Modint result = *this; --*this; return result; } friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) += rhs; } friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) -= rhs; } friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) *= rhs; } friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { return Arbitrary_Modint(lhs) /= rhs; } friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) { assert(rhs.x == 0); return Arbitrary_Modint(lhs); } bool operator==(const Arbitrary_Modint &p) const { return x == p.x; } bool operator!=(const Arbitrary_Modint &p) const { return x != p.x; } bool operator<(const Arbitrary_Modint &rhs) { return x < rhs.x; } bool operator<=(const Arbitrary_Modint &rhs) { return x <= rhs.x; } bool operator>(const Arbitrary_Modint &rhs) { return x > rhs.x; } bool operator>=(const Arbitrary_Modint &rhs) { return x >= rhs.x; } Arbitrary_Modint inverse() const { int a = x, b = MOD, u = 1, v = 0, t; while (b > 0) { t = a / b; a -= t * b; u -= t * v; std::swap(a, b); std::swap(u, v); } return Arbitrary_Modint(u); } Arbitrary_Modint pow(int64_t k) const { Arbitrary_Modint ret(1); Arbitrary_Modint y(x); while (k > 0) { if (k & 1) ret *= y; y *= y; k >>= 1; } return ret; } friend std::ostream &operator<<(std::ostream &os, const Arbitrary_Modint &p) { return os << p.x; } friend std::istream &operator>>(std::istream &is, Arbitrary_Modint &p) { int64_t y; is >> y; p = Arbitrary_Modint(y); return (is); } static int get_mod() { return MOD; } }; int Arbitrary_Modint::MOD = 998244353; using modint9 = Modint<998244353>; using modint1 = Modint<1000000007>; using modint = Arbitrary_Modint; using mint = modint9; template <typename T> T modinv(T a, T MOD) { T b = MOD; T u = 1; T v = 0; while (b > 0) { T t = a / b; a -= t * b; u -= t * v; std::swap(a, b); std::swap(u, v); } if (a != 1) return -1; if (u < 0) u += MOD; return u; } template <typename T> std::vector<T> berlekampMessy(const std::vector<T> &A) { int n = A.size(); std::vector<T> B(1, -1); std::vector<T> C(1, -1); T y = 1; for (int j = 1; j <= n; j++) { int l = C.size(); int m = B.size(); T x = 0; for (int i = 0; i < l; i++) { x += C[i] * A[j - l + i]; } B.push_back(0); m++; if (x == 0) continue; T freq = x / y; if (l < m) { std::vector<T> D(m - l, T(0)); D.insert(D.end(), C.begin(), C.end()); for (int i = 0; i < m; i++) { D[m - 1 - i] -= freq * B[m - 1 - i]; } std::swap(B, C); std::swap(C, D); y = x; } else { for (int i = 0; i < m; i++) { C[l - 1 - i] -= freq * B[m - 1 - i]; } } } std::reverse(C.begin(), C.end()); for (auto &c : C) c = -c; return C; } /* return x^n mod f 引数: f_reversed: f(x)の係数(逆順, f_reversed[0] = 1) */ template <typename T> std::vector<T> monomial_mod_polynomial(long long n, const std::vector<T> &f_reversed) { assert(!f_reversed.empty() and f_reversed[0] == 1); int K = f_reversed.size() - 1; if (!K) return {}; int D = 64 - __builtin_clzll(n); std::vector<T> ret(K, 0); ret[0] = 1; auto self_conv = [](std::vector<T> &x) -> std::vector<T> { int d = x.size(); std::vector<T> ret(2 * d - 1); for (int i = 0; i < d; i++) { ret[2 * i] += x[i] * x[i]; for (int j = 0; j < i; j++) ret[i + j] += 2 * x[i] * x[j]; } return ret; }; for (int d = D - 1; d >= 0; d--) { ret = self_conv(ret); for (int i = 2 * K - 2; i >= K; i--) { for (int j = 1; j <= K; j++) { ret[i - j] -= ret[i] * f_reversed[j]; } } ret.resize(K); if ((n >> d) & 1) { std::vector<T> c(K); c[0] = -ret[K - 1] * f_reversed[K]; for (int i = 1; i < K; i++) { c[i] = ret[i - 1] - ret[K - 1] * f_reversed[K - i]; } ret = c; } } return ret; } template <typename T> T guess_kth_term(const std::vector<T> &A, long long k, bool debug = false) { assert(k >= 0); if (k < int(A.size())) return A[k]; const auto F = berlekampMessy(A); if (debug) { std::cerr << "F.size() = " << F.size() << "\n" << std::flush; } const auto G = monomial_mod_polynomial<T>(k, F); T ret = 0; for (size_t i = 0; i < G.size(); i++) ret += G[i] * A[i]; return ret; } using mint2 = Modint<998244352>; template <typename type> struct Matrix { int n, m; std::vector<std::vector<type>> A; Matrix() = default; Matrix(int n, int m) : n(n), m(m), A(n, std::vector<type>(m, 0)) {} Matrix(int n) : n(n), m(n), A(n, std::vector<type>(n, 0)) {} Matrix(std::vector<std::vector<type>> A) : n(A.size()), m(A[0].size()), A(A) {} inline const std::vector<type> &operator[](int k) const { return (A.at(k)); } inline std::vector<type> &operator[](int k) { return (A.at(k)); } Matrix T() { Matrix<type> B(m, n); for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) { B.A[i][j] = A[j][i]; } return B; } Matrix &operator=(const std::vector<std::vector<type>> &B) { n = B.size(); m = B[0].size(); A = B; return *this; } Matrix &operator+=(const Matrix &B) { assert(n == int(B.A.size())); assert(m == int(B.A[0].size())); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { this->A[i][j] += B[i][j]; } return *this; } Matrix &operator-=(const Matrix &B) { assert(n == int(B.A.size())); assert(m == int(B.A[0].size())); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) { this->A[i][j] -= B[i][j]; } return *this; } Matrix &operator*=(const Matrix &B) { int k = B[0].size(); assert(m == int(B.A.size())); std::vector<std::vector<type>> C(n, std::vector<type>(k, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < k; j++) { for (int l = 0; l < m; l++) { C[i][j] += this->A[i][l] * B[l][j]; } } std::swap(this->A, C); this->m = k; return *this; } std::vector<type> operator*(const std::vector<type> &x) { assert(m == int(x.size())); std::vector<type> ret(n, 0); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) ret[i] += this->A[i][j] * x[j]; return ret; } template <typename Ti> Matrix &operator*=(const Ti x) { for (auto &row : A) { for (auto &e : row) { e *= x; } } return *this; } Matrix operator-() { return (Matrix(*this) *= -1); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } type det() { auto arr = A; assert(n == m); type ret = 1; for (int i = 0; i < n; i++) { if (arr[i][i] == 0) { bool ng = true; for (int j = i + 1; j < n; j++) { if (arr[j][i] == 0) continue; swap(arr[i], arr[j]); ret *= -1; ng = false; break; } if (ng) return 0; } ret *= arr[i][i]; type inv = type(1) / arr[i][i]; for (int j = i; j < n; j++) arr[i][j] *= inv; for (int j = i + 1; j < n; j++) { type x = arr[j][i]; for (int k = i; k < n; k++) { arr[j][k] -= arr[i][k] * x; } } } return ret; } void I() { assert(n == m); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (i == j) A[i][j] = 1; else A[i][j] = 0; } } } Matrix<type> inv() { assert(n == m); Matrix<type> ret(n); ret.I(); auto &B = ret.A; auto arr = A; for (int j = 0; j < n; j++) { int ii = -1; for (int i = j; i < n; i++) { if (arr[i][j] != 0) { ii = i; break; } } if (ii == -1) { return {}; } swap(arr[j], arr[ii]); swap(B[j], B[ii]); ii = j; type inv = type(1) / arr[ii][j]; for (int jj = 0; jj < n; jj++) { B[ii][jj] *= inv; arr[ii][jj] *= inv; } for (int i = 0; i < n; i++) { if (i == ii) continue; type t = arr[i][j]; for (int jj = 0; jj < n; jj++) { arr[i][jj] -= arr[ii][jj] * t; B[i][jj] -= B[ii][jj] * t; } } } return ret; } int choose_pivot(int h, int c) const { for (int j = h; j < n; j++) { if (A[j][c] != type(0)) return j; } return -1; } int rank() const { auto arr = *this; if (arr.n < arr.m) { arr = arr.T(); } int ret = 0; for (int i = 0; i < arr.m; i++) { int j = arr.choose_pivot(ret, i); if (j == -1) continue; swap(arr[ret], arr[j]); type inv = type(1) / arr[ret][i]; for (int k = i; k < arr.m; k++) { arr[ret][k] *= inv; } for (int j = ret + 1; j < arr.n; j++) { type x = arr[j][i]; for (int k = i; k < arr.m; k++) { arr[j][k] -= arr[ret][k] * x; } } ret++; } return ret; } Matrix<type> pow(long long k) { assert(n == m); Matrix<type> B(n); B.I(); Matrix<type> A(*this); while (k) { if (k & 1) B *= A; A *= A; k >>= 1; } return B; } friend std::ostream &operator<<(std::ostream &os, const Matrix &p) { for (int i = 0; i < p.n; i++) { for (auto &x : p.A[i]) { os << x << " "; } if (i != p.n - 1) { os << "\n"; } } return (os); } friend std::istream &operator>>(std::istream &is, Matrix &p) { for (auto &row : p.A) { for (auto &x : row) { is >> x; } } return (is); } }; template <typename T> Matrix<T> Matrix_exp(Matrix<T> A, Matrix<T> B, long long k) { assert(A.A.size() == A[0].size()); assert(A.A.size() == B.A.size()); assert(B.A[0].size() == 1u); while (k > 0) { if (k & 1) B = A * B; A *= A; k >>= 1; } return B; } template <typename T> std::vector<T> Matrix_exp(Matrix<T> A, std::vector<T> B, long long k) { assert(A.A.size() == A[0].size()); assert(A.A.size() == B.size()); while (k > 0) { if (k & 1) { B = A * B; } A *= A; k >>= 1; } return B; } void solve() { LL(n); if (n <= 1000) { mint now = 1; int length = 1; fori(i, 2, n + 1) { auto x = i; int le = 0; while (x) { x /= 10; le++; } mint nex = now; nex += i * mint(10).pow(length); nex += now * mint(10).pow(length + le); length = 2 * length + le; length %= 998244352; now = nex; } print(now); return; } mint now = 1; int length = 1; fori(i, 2, 1000) { auto x = i; int le = 0; while (x) { x /= 10; le++; } mint nex = now; nex += i * mint(10).pow(length); nex += now * mint(10).pow(length + le); length = 2 * length + le; length %= 998244352; now = nex; } ll x = 1000; n++; int le = 4; while (x < n) { ll y = x * 10; chmin(y, n); vec(mint, A, 500); mint2 bef_length = length; fori(i, x, x + 500) { mint nex = now; nex += i * mint(10).pow(length); nex += now * mint(10).pow(length + le); length = 2 * length + le; length %= 998244352; now = nex; A[i - x] = now; } now = guess_kth_term(A, y - x - 1, true); Matrix<mint2> B({ {2, le}, {0, 1}, }); B = B.pow(y - x); length = (B[0][0] * bef_length + B[0][1]).x; le++; x = y; } print(now); } int main() { #ifndef INTERACTIVE std::cin.tie(0)->sync_with_stdio(0); #endif // std::cout << std::fixed << std::setprecision(12); int t; t = 1; // std::cin >> t; while (t--) solve(); return 0; } // // #pragma GCC target("avx2") // // #pragma GCC optimize("O3") // // #pragma GCC optimize("unroll-loops") // // #define INTERACTIVE // // #include "kyopro-cpp/template.hpp" // // #include "misc/Modint.hpp" // using mint = modint9; // #include "polynomial/guess_kth_term.hpp" // using mint2 = Modint<998244352>; // #include "matrix/Matrix_exp.hpp" // // void solve() { // LL(n); // // if (n <= 1000) { // mint now = 1; // int length = 1; // fori(i, 2, n + 1) { // auto x = i; // int le = 0; // while (x) { // x /= 10; // le++; // } // // mint nex = now; // nex += i * mint(10).pow(length); // nex += now * mint(10).pow(length + le); // length = 2 * length + le; // length %= 998244352; // // now = nex; // } // // print(now); // return; // } // // mint now = 1; // int length = 1; // fori(i, 2, 1000) { // auto x = i; // int le = 0; // while (x) { // x /= 10; // le++; // } // // mint nex = now; // nex += i * mint(10).pow(length); // nex += now * mint(10).pow(length + le); // length = 2 * length + le; // length %= 998244352; // // now = nex; // } // // ll x = 1000; // n++; // int le = 4; // while (x < n) { // ll y = x * 10; // chmin(y, n); // // vec(mint, A, 500); // mint2 bef_length = length; // fori(i, x, x + 500) { // mint nex = now; // nex += i * mint(10).pow(length); // nex += now * mint(10).pow(length + le); // length = 2 * length + le; // length %= 998244352; // // now = nex; // A[i - x] = now; // } // // now = guess_kth_term(A, y - x - 1, true); // // Matrix<mint2> B({ // {2, le}, // {0, 1}, // }); // B = B.pow(y - x); // length = (B[0][0] * bef_length + B[0][1]).x; // // le++; // x = y; // } // print(now); // } // // int main() { // #ifndef INTERACTIVE // std::cin.tie(0)->sync_with_stdio(0); // #endif // // std::cout << std::fixed << std::setprecision(12); // int t; // t = 1; // // std::cin >> t; // while (t--) solve(); // return 0; // }