結果
問題 | No.2362 Inversion Number of Mod of Linear |
ユーザー | 2qbingxuan |
提出日時 | 2024-12-22 00:44:48 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,287 bytes |
コンパイル時間 | 3,544 ms |
コンパイル使用メモリ | 262,536 KB |
実行使用メモリ | 10,496 KB |
最終ジャッジ日時 | 2024-12-22 00:45:10 |
合計ジャッジ時間 | 16,589 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,496 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | TLE | - |
testcase_04 | AC | 701 ms
5,248 KB |
testcase_05 | AC | 140 ms
5,248 KB |
testcase_06 | TLE | - |
testcase_07 | AC | 1,672 ms
5,248 KB |
testcase_08 | TLE | - |
testcase_09 | TLE | - |
ソースコード
#pragma GCC optimize("Ofast") #include <bits/stdc++.h> using namespace std; #define all(x) begin(x), end(x) #ifdef local #define safe cerr << __LINE__ << " line " << __LINE__ << " safe\n" #define debug(a...) debug_(#a, a) #define orange(a...) orange_(#a, a) template <typename ...T> void debug_(const char *s, T ...a) { cerr << "\e[1;32m(" << s << ") = ("; int cnt = sizeof...(T); (..., (cerr << a << (--cnt ? ", " : ")\e[0m\n"))); } template <typename I> void orange_(const char *s, I L, I R) { cerr << "\e[1;32m[ " << s << " ] = [ "; for (int f = 0; L != R; ++L) cerr << (f++ ? ", " : "") << *L; cerr << " ]\e[0m\n"; } #else #define safe ((void)0) #define debug(...) safe #define orange(...) safe #endif using lld = int64_t; using llu = uint64_t; using llf = long double; using u128 = __uint128_t; lld fdiv(lld a, lld b) { return a / b - (a % b && (a < 0) ^ (b < 0)); } lld cdiv(lld a, lld b) { return a / b + (a % b && (a < 0) ^ (b > 0)); } /* template <typename T> T brute(llu a, llu b, llu c, llu n, T U, T R) { T res; for (llu i = 1, l = 0; i <= n; i++, res = res * R) for (llu r = (a*i+b)/c; l < r; ++l) res = res * U; return res; } */ template <typename T> T euclid(llu a, llu b, llu c, llu n, T U, T R) { if (!n) return T{}; if (b >= c) return mpow(U, b / c) * euclid(a, b % c, c, n, U, R); if (a >= c) return euclid(a % c, b, c, n, U, mpow(U, a / c) * R); llu m = (u128(a) * n + b) / c; if (!m) return mpow(R, n); return mpow(R, (c - b - 1) / a) * U * euclid(c, (c - b - 1) % a, a, m - 1, R, U) * mpow(R, n - (u128(c) * m - b - 1) / a); } // time complexity is O(log max(a, b, c)) // UUUU R UUUUU R ... UUU R 共 N 個 R,最後一個必是 R // 一直到第 k 個 R 前總共有 (ak+b)/c 個 U /* U -> cnt += 1, sum += i R -> i += 1 */ template <int K> struct Mat : array<array<lld, K>, K> { friend Mat operator*(const Mat &a, const Mat &b) { Mat c; for (int i = 0; i < K; i++) for (int j = 0; j < K; j++) c[i][j] = 0; for (int i = 0; i < K; i++) for (int j = i; j < K; j++) for (int k = i; k <= j; k++) c[i][j] += a[i][k] * b[k][j]; return c; } constexpr Mat() { for (int i = 0; i < K; i++) for (int j = 0; j < K; j++) (*this)[i][j] = (i == j); } }; template <typename T> T mpow(T e, llu n) { T r; while (n) { if (n & 1) r = r * e; e = e * e; n >>= 1; } return r; } signed main() { cin.tie(nullptr)->sync_with_stdio(false); // a = q_a * M + r_a // b = q_b * M + r_b // // floor((b - a) / M) // = (q_b - q_a) (if r_b >= r_a) // (q_b - q_a - 1) (if r_b < r_a) // // therefore ans // = \sum _ {i > j} floor((A_i - A_j) / M) - (floor(A_i / M) - floor(A_j / M)) // = \sum _ {1 <= l < N} (N - l) * fdiv(l * X, M) // - \sum _ {0 <= i < N} i * fdiv(i * X + Y, M) // + \sum _ {0 <= j < N} (N - 1 - j) * fdiv(j * X + Y, M) int T; cin >> T; while (T--) { lld N, M, X, Y; cin >> N >> M >> X >> Y; lld ans = 0; // for (int i = 0; i < N; i++) // ans -= (N - i) * fdiv(i * X, M); // for (int i = 0; i < N; i++) // ans += (i * 2 - N + 1) * fdiv(i * X + Y, M); // ans += N * (N + 1) / 2; // for (int i = 1; i <= N; i++) { // ans += (0 - N - 1) * fdiv(i * X + (M - X), M); // } // for (int i = 1; i <= N; i++) { // ans += (0 * 2 - N - 1) * fdiv(i * X + Y - X + M, M); // } // cout << ans << '\n'; // continue; debug(Y + (M - X)); ans += N * (N + 1) / 2; // 1, (i), (U 加了幾次), (i) * (U 加了幾次), (\sum _ {1 <= j <= i} (j * (U 加了幾次)) { Mat<5> U; U[0][2] = 1; U[1][3] = 1; Mat<5> R; R[0][1] = 1; R[2][3] = 1; R[2][4] = 1; R[3][4] = 1; auto m1 = euclid(X, 0 + (M - X), M, N, U, R); auto m2 = euclid(X, Y + (M - X), M, N, U, R); ans += m1[0][4]; ans += m2[0][4] * 2; } // 1, (U 加了幾次), \sum _ {i} U 加了幾次 { Mat<3> U; U[0][1] = 1; Mat<3> R; R[1][2] = 1; auto m1 = euclid(X, 0 + (M - X), M, N, U, R); auto m2 = euclid(X, Y + (M - X), M, N, U, R); ans -= (N + 1) * m1[0][2]; ans -= (N + 1) * m2[0][2]; } cout << ans << '\n'; } }