結果
問題 | No.1916 Making Palindrome on Gird |
ユーザー | eQe |
提出日時 | 2024-12-22 02:07:56 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,573 ms / 3,000 ms |
コード長 | 5,144 bytes |
コンパイル時間 | 6,123 ms |
コンパイル使用メモリ | 325,320 KB |
実行使用メモリ | 58,284 KB |
最終ジャッジ日時 | 2024-12-22 02:08:23 |
合計ジャッジ時間 | 24,955 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 444 ms
22,924 KB |
testcase_14 | AC | 219 ms
14,392 KB |
testcase_15 | AC | 584 ms
27,828 KB |
testcase_16 | AC | 385 ms
22,776 KB |
testcase_17 | AC | 1,316 ms
50,324 KB |
testcase_18 | AC | 1,573 ms
56,876 KB |
testcase_19 | AC | 1,510 ms
57,260 KB |
testcase_20 | AC | 1,497 ms
57,008 KB |
testcase_21 | AC | 1,492 ms
57,132 KB |
testcase_22 | AC | 1,487 ms
57,132 KB |
testcase_23 | AC | 2 ms
5,248 KB |
testcase_24 | AC | 2 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 3 ms
5,248 KB |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 1,489 ms
58,284 KB |
testcase_29 | AC | 1,464 ms
58,260 KB |
testcase_30 | AC | 1,564 ms
58,156 KB |
testcase_31 | AC | 1,440 ms
58,204 KB |
testcase_32 | AC | 1,457 ms
58,024 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; namespace my{ using ml=atcoder::modint1000000007; auto&operator>>(istream&i,ml&x){int t;i>>t;x=t;return i;} auto&operator<<(ostream&o,const ml&x){return o<<(int)x.val();} #define eb emplace_back #define done(...) return pp(__VA_ARGS__) #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define of(i,...) for(auto[i,i##stop,i##step]=range(1,__VA_ARGS__);i>=i##stop;i-=i##step) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define grid_right_down_fe(x,y,nx,ny,H,W) for(ll nx=x,ny=y+1;nx<=x+1;++nx,--ny)if(nx<H&&ny<W) #define grid_left_up_fe(x,y,nx,ny,H,W) for(ll nx=x,ny=y-1;nx>=x-1;--nx,++ny)if(0<=nx&&0<=ny) #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; constexpr auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;return r;} constexpr char newline=10; constexpr char space=32; auto max(const auto&...a){return max(initializer_list<common_type_t<decltype(a)...>>{a...});} auto min(const auto&...a){return min(initializer_list<common_type_t<decltype(a)...>>{a...});} template<class A,class B>struct pair{ A a;B b; pair()=default; pair(A a,B b):a(a),b(b){} pair(const std::pair<A,B>&p):a(p.first),b(p.second){} auto operator<=>(const pair&)const=default; pair operator+(const pair&p)const{return{a+p.a,b+p.b};} friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;} }; template<class T,class U>ostream&operator<<(ostream&o,const std::pair<T,U>&p){return o<<p.first<<space<<p.second;} template<class T,class U>ostream&operator<<(ostream&o,const unordered_map<T,U>&m){fe(m,e)o<<e.first<<space<<e.second<<newline;return o;} template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>; template<class T>struct vec_attr{using core_type=T;static constexpr int d=0;}; template<vectorial V>struct vec_attr<V>{using core_type=typename vec_attr<typename V::value_type>::core_type;static constexpr int d=vec_attr<typename V::value_type>::d+1;}; template<class T>using core_t=vec_attr<T>::core_type; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?newline:space);return o;} template<class V>struct vec:vector<V>{ using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec operator^(const vec&u)const{return vec{*this}^=u;} vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;} vec operator+(const vec&u)const{return vec{*this}+=u;} vec operator-(const vec&u)const{return vec{*this}-=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;} auto scan(const auto&f)const{pair<core_t<V>,bool>r{};fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;} auto max()const{return scan([](auto&a,const auto&b){a<b?a=b:0;}).a;} auto min()const{return scan([](auto&a,const auto&b){a>b?a=b:0;;}).a;} }; void lin(auto&...a){(cin>>...>>a);} auto sinen(const string&b="a"){string s;lin(s);vec<ll>r;fe(s,e)r.eb(b.size()==1?e-b[0]:b.find_first_of(e));return r;} auto sinen(ll n,const string&b="a"){vec<vec<ll>>r;fo(n)r.eb(sinen(b));return r;} template<char c=space>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<newline;} ll median_middle_index(ll n){return n/2;} auto manhattan_distance_dth_enumerate(ll d,ll H,ll W){ vec<pair<ll,ll>>res; fo(i,max(0,d-W+1),min(d,H-1)+1)res.eb(i,d-i); return res; } ll grid_median_middle(ll H,ll W){return median_middle_index(H+W-1);} single_testcase void solve(){ LL(H,W); auto a=sinen(H); if(a[0][0]!=a[H-1][W-1])done(0); auto index=[&](ll i,ll j,ll k,ll l){return((i*W+j)*H+k)*W+l;}; unordered_map<ll,ml>dp; dp[index(0,0,H-1,W-1)]=1; fo(i,H)fo(j,W){ if(i+j>=grid_median_middle(H,W)+1)continue; of(k,H,i)of(l,W,j){ if((H-1-k)+(W-1-l)>=grid_median_middle(H,W)+1)continue; if(i+j!=(H-1-k)+(W-1-l))continue; grid_right_down_fe(i,j,ni,nj,H,W){ grid_left_up_fe(k,l,nk,nl,H,W){ if(a[ni][nj]==a[nk][nl])dp[index(ni,nj,nk,nl)]+=dp[index(i,j,k,l)]; } } } } ml ans=0; if((H+W)&1){ ll m=(H+W-1)/2-1; fe(manhattan_distance_dth_enumerate(m,H,W),i,j)grid_right_down_fe(i,j,ni,nj,H,W)ans+=dp[index(i,j,ni,nj)]; }else{ ll m=(H+W)/2-1; fe(manhattan_distance_dth_enumerate(m,H,W),i,j)ans+=dp[index(i,j,i,j)]; } pp(ans); }}