結果

問題 No.3009 Union-Find でつながろう!
ユーザー ジュ・ビオレ・グレイス
提出日時 2024-12-22 12:27:22
言語 D
(dmd 2.109.1)
結果
AC  
実行時間 649 ms / 2,000 ms
コード長 4,615 bytes
コンパイル時間 643 ms
コンパイル使用メモリ 84,076 KB
実行使用メモリ 6,528 KB
最終ジャッジ日時 2025-01-17 20:50:45
合計ジャッジ時間 6,844 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// n is known at the compile time
// treat subsets of {0, 1, ..., n-1}
struct BitSet(size_t n)
{
static immutable bit_size = 8 * size_t.sizeof;
static immutable data_size = (n % bit_size == 0 ? n/bit_size : n/bit_size+1);
size_t[data_size] data;
this (size_t[] elements ...) {
foreach (elem; elements) {
assert(elem < n);
auto q = elem / bit_size;
auto r = elem % bit_size;
data[q] |= (1UL << r);
}
}
BitSet opUnary(string op : "~")() {
auto result = this;
result.data[] = ~(result.data[]);
return result;
}
// set operations
BitSet opBinary(string op)(BitSet rhs) {
auto result = this;
static if (op == "*" || op == "&") {
result.data[] &= rhs.data[];
}
else if (op == "-") {
result.data[] &= ~(rhs.data[]);
}
else if (op == "+" || op == "|") {
result.data[] |= rhs.data[];
}
else assert(0);
return result;
}
BitSet opBinary(string op)(size_t[] rhs ...) {
return opBinary!op(new BitSet(n, rhs));
}
BitSet opOpAssign(string op)(BitSet rhs) {
static if (op == "*" || op == "&") {
this.data[] &= rhs.data[];
}
else if (op == "-") {
this.data[] &= ~(rhs.data[]);
}
else if (op == "+" || op == "|") {
this.data[] |= rhs.data[];
}
else assert(0);
return this;
}
BitSet opOpAssign(string op)(size_t[] rhs ...) {
return opOpAssign!op(BitSet!n(rhs));
}
bool opBinaryRight(string op : "in")(size_t lhs) {
assert(lhs < n);
auto q = lhs / bit_size;
auto r = lhs % bit_size;
return (data[q] & (1UL << r)) != 0;
}
bool opBinaryRight(string op : "in")(size_t[] lhs) {
bool result = true;
foreach (elem; lhs)
result = result && (elem in this);
return result;
}
size_t[] to_elements() {
size_t[] result;
foreach (q; 0 .. data_size) foreach (r; 0 .. bit_size) {
auto i = q * bit_size + r;
if (i >= n) break;
if (data[q] & (1UL << r)) result ~= i;
}
return result;
}
size_t size() {
size_t result;
foreach (q; 0 .. data_size) foreach (r; 0 .. bit_size) {
auto i = q * bit_size + r;
if (i >= n) break;
if (data[q] & (1UL << r)) ++result;
}
return result;
}
}
// Union-tree of {0, 1, ..., num-1}
class UnionFind {
size_t num;
private size_t[] parent;
private size_t[] rank;
private size_t[] size_;
this (size_t num) {
this.num = num;
parent.length = num;
foreach (n; 0 .. num) parent[n] = n;
rank.length = num;
size_.length = num;
}
size_t root(size_t n) {
assert(n < num);
if (parent[n] == n) return n;
else return parent[n] = root(parent[n]); // recursively set the root
}
bool is_same(size_t n, size_t m) {
assert(n < num && m < num);
return root(n) == root(m);
}
// false if already united
bool unite(size_t n, size_t m) {
assert(n < num && m < num);
auto rn = root(n), rm = root(m);
if (rn == rm) return false;
// swap if necessary to force rank[rm] <= rank[rn]
if (rank[rn] < rank[rm]) {
auto tmp = rm;
rm = rn;
rn = tmp;
}
parent[rm] = rn;
if (rank[rn] == rank[rm]) ++rank[rn];
size_[rn] += size_[rm] + 1;
return true;
}
size_t size(size_t n) {
return size_[root(n)]+1;
}
size_t size() {
size_t result;
foreach (i; 0 .. num)
if (root(i) == i) result += 1;
return result;
}
}
// MAIN PART
immutable M_max = 4096;
alias Set = BitSet!M_max;
// T.length = M
ulong solve(ulong M, ulong N, Set[] Top) {
auto tree = new UnionFind(N);
foreach (i; 0 .. N) {
// calculate the complement of the closure of {i}
auto i_closure_complement = Set();
foreach (U; Top) {
if (i !in U) i_closure_complement |= U;
}
// for each j in the closure of {i}
foreach (j; 0 .. N)
if (j !in i_closure_complement)
tree.unite(i, j);
}
return tree.size;
}
void main() {
import std.stdio, std.conv, std.array;
ulong M, N;
{
auto MN = readln().split();
M = MN[0].to!ulong;
N = MN[1].to!ulong;
}
// make the data of subsets
Set[] Top;
foreach (m; 0 .. M) {
Top ~= Set();
auto bits = readln();
foreach (i; 0 .. N) // remove the last \n
if (bits[i] == '1') Top[m] += i;
}
solve(M, N, Top).writeln();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0