結果

問題 No.2978 Lexicographically Smallest and Largest Subarray
ユーザー The Forsaking
提出日時 2024-12-25 14:34:53
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 189 ms / 2,000 ms
コード長 3,323 bytes
コンパイル時間 1,293 ms
コンパイル使用メモリ 120,844 KB
最終ジャッジ日時 2025-02-26 16:39:54
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 57
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int ask(int, int, int, int)’:
main.cpp:65:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   65 |     scanf("%d", &res);
      |     ~~~~~^~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <sstream>
#include <iomanip>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <ctime>
#include <assert.h>
#include <deque>
#include <list>
#include <stack>
using namespace std;
#define is_mul_overflow(a, b) \
((b != 0) && (a > LLONG_MAX / b || a < LLONG_MIN / b))
typedef pair<long long, int> pli;
typedef pair<int, long long> pil;
typedef pair<long long , long long> pll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<int, pii> piii;
typedef pair<int, long long > pil;
typedef pair<long long, pii> plii;
typedef pair<double, int> pdi;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ull, ull> puu;
typedef long double ld;
const int N = 2000086, MOD = 998244353, INF = 0x3f3f3f3f, MID = 333;
const long double EPS = 1e-8;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
// int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
// int dx[8] = {2, 1, -1, -2, -2, -1, 1, 2}, dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};
int n, m, cnt;
int w[N];
vector<ll> num;
ll res;
ll lowbit(ll x) { return x & -x; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
inline double rand(double l, double r) { return (double)rand() / RAND_MAX * (r - l) + l; }
inline ll qmi(ll a, ll b, ll c) { ll res = 1; while (b) { if (b & 1) res = res * a % c; a = a * a % c; b >>= 1; } return res; }
inline ll qmi(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; }
inline double qmi(double a, ll b) { double res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; }
// inline ll C(ll a, ll b) { if (a < b) return 0; if (b > a - b) b = a - b; ll res = 1; for (ll i = 1, j = a; i <= b; i++, j--) { res = res * (j %
    MOD) % MOD; res = res * qmi(i, MOD - 2, MOD) % MOD; } return res; }
inline ll C(ll a, ll b, int* c) { if (a < b) return 0; ll res = 1; for (ll j = a, i = 1; i < b + 1; i++, j--) res *= j; for (ll j = a, i = 1; i < b +
    1; i++, j--) res /= i; return res; }
inline int find_(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); }
int ask(int a, int b, int c, int d) {
printf("? %d %d %d %d\n", a, b, c, d);
fflush(stdout);
int res;
scanf("%d", &res);
if (res == -1) while (1);
return res;
}
void solve() {
queue<int> h, l;
for (int i = 1; i < n + 1; i+= 2) {
int ans = ask(i, i, i + 1, i + 1);
if (ans == 1) {
h.push(i + 1);
l.push(i);
} else {
h.push(i);
l.push(i + 1);
}
}
while (l.size() > 1) {
int u = l.front(); l.pop();
int v = l.front(); l.pop();
int ans = ask(u, u, v, v);
if (ans == 1) l.push(u);
else l.push(v);
}
while (h.size() > 1) {
int u = h.front(); h.pop();
int v = h.front(); h.pop();
int ans = ask(u, n, v, n);
if (ans == 1) h.push(v);
else h.push(u);
}
printf("! %d %d %d %d\n", l.front(), l.front(), h.front(), n);
fflush(stdout);
}
int main() {
cin >> n >> m;
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0