結果

問題 No.3000 Optimal Run Length Encoding
ユーザー ecottea
提出日時 2024-12-25 17:50:14
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 20,042 bytes
コンパイル時間 3,832 ms
コンパイル使用メモリ 263,484 KB
最終ジャッジ日時 2025-02-26 16:46:05
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
In file included from /usr/include/c++/13/string:43,
                 from /usr/include/c++/13/bitset:52,
                 from /usr/include/x86_64-linux-gnu/c++/13/bits/stdc++.h:52,
                 from main.cpp:13:
/usr/include/c++/13/bits/allocator.h: In destructor ‘std::__cxx11::basic_string<char>::_Alloc_hider::~_Alloc_hider()’:
/usr/include/c++/13/bits/allocator.h:184:7: error: inlining failed in call to ‘always_inline’ ‘std::allocator< <template-parameter-1-1> >::~allocator() noexcept [with _Tp = char]’: target specific option mismatch
  184 |       ~allocator() _GLIBCXX_NOTHROW { }
      |       ^
In file included from /usr/include/c++/13/string:54:
/usr/include/c++/13/bits/basic_string.h:181:14: note: called from here
  181 |       struct _Alloc_hider : allocator_type // TODO check __is_final
      |              ^~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

// QCFium
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; using ull = unsigned long long; // -2^63 2^63 = 9e18int -2^31 2^31 = 2e9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
int DX[4] = { 1, 0, -1, 0 }; // 4
int DY[4] = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003094073385LL; // (int)INFL = INF, (int)(-INFL) = -INF;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), (x)))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), (x)))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0, set##_ub = 1 << int(d); set < set##_ub; ++set) // d
#define repis(i, set) for(int i = lsb(set), bset##i = set; i < 32; bset##i -= 1 << i, i = lsb(bset##i)) // set
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll powi(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T getb(T set, int i) { return (set >> i) & T(1); }
template <class T> inline T smod(T n, T m) { n %= m; if (n < 0) n += m; return n; } // mod
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
using mint = modint998244353;
//using mint = static_modint<1000000007>;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; using pim = pair<int, mint>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : 32; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : 64; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define dump(...)
#define dumpel(...)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) { vc MLE(1<<30); EXIT(MLE.back()); } } // RE MLE
#endif
//
/*
* Substring_compare(sting s) : O(n log n)
* s[0..n)
*
* int lcp(int l1, int r1, int l2, int r2) : O(1)
* s[l1..r1) s[l2..r2) LCP
*
* bool comp(int l1, int r1, int l2, int r2) : O(1)
* s[l1..r1) < s[l2..r2)
*
* bool equalQ(int l1, int r1, int l2, int r2) : O(1)
* s[l1..r1) = s[l2..r2)
*/
template <class STR>
class Substring_compare {
int n;
vi sa_inv;
// LCP min-Sparse Table
vvi lcp_min;
// l1, r1, l2, r2 [0..n] s[l1..r1) s[l2..r2) LCP
int clamp_lcp(int& l1, int& r1, int& l2, int& r2) const {
chmax(l1, 0); chmax(l2, 0); chmin(r1, n); chmin(r2, n);
int w1 = r1 - l1, w2 = r2 - l2;
if (w1 == 0 || w2 == 0) return 0;
if (l1 == l2) return min(w1, w2);
int i1 = sa_inv[l1], i2 = sa_inv[l2];
if (i1 > i2) swap(i1, i2);
int k = msb(i2 - i1);
int lcp = min({ lcp_min[k][i1], lcp_min[k][i2 - (1 << k)], w1, w2 });
return lcp;
}
public:
// s[0..n)
Substring_compare(const STR& s) : n(sz(s)), sa_inv(n) {
// verify : https://judge.yosupo.jp/problem/runenumerate
if (n == 1) return;
auto sa = suffix_array(s);
rep(i, n) sa_inv[sa[i]] = i;
int K = msb(n - 1) + 1;
lcp_min = vvi(K);
lcp_min[0] = lcp_array(s, sa);
repi(k, 1, K - 1) {
lcp_min[k].resize(n - 1);
int w = 1 << (k - 1);
rep(i, n - 1 - w) {
lcp_min[k][i] = min(lcp_min[k - 1][i], lcp_min[k - 1][i + w]);
}
}
}
// s[l1..r1) s[l2..r2) LCP
int lcp(int l1, int r1, int l2, int r2) const {
// verify : https://judge.yosupo.jp/problem/runenumerate
return clamp_lcp(l1, r1, l2, r2);
}
// s[l1..r1) < s[l2..r2)
bool comp(int l1, int r1, int l2, int r2) const {
// verify : https://yukicoder.me/problems/no/2454
int lcp = clamp_lcp(l1, r1, l2, r2);
if (l2 + lcp == r2) return false;
if (l1 + lcp == r1) return true;
return sa_inv[l1] < sa_inv[l2];
}
// s[l1..r1) = s[l2..r2)
bool equalQ(int l1, int r1, int l2, int r2) const {
// verify : https://atcoder.jp/contests/tessoku-book/tasks/tessoku_book_bd
int lcp = clamp_lcp(l1, r1, l2, r2);
return l1 + lcp == r1 && l2 + lcp == r2;
}
};
//O(n log n)
/*
* s[0..n) t s[l..r) 3 {l, r, t}
* s[l..r) s t
* s[l..r) tr-l ≧ 2t
* s[l-1..r), s[l..r+1) t
*
*
*
*
*/
template <class STR>
vector<tuple<int, int, int>> enumerate_cyclic_run(const STR& s) {
// : https://pazzle1230.hatenablog.com/entry/2019/11/27/234632
// verify : https://judge.yosupo.jp/problem/runenumerate
//
// m s[l..r) O(|s|) 使
// r-l ≧ 2t s[l..m), s[m..r) 1
// 1 m O(|s|)
// LCP
int n = sz(s);
STR sR(s);
reverse(all(sR));
Substring_compare S(s), SR(sR);
// lr_to_t[l*(n+1)+r] : s[l..r)
unordered_map<ll, int> lr_to_t;
function<void(int, int)> rf = [&](int L, int R) {
if (R - L <= 1) return;
int M = (L + R) / 2;
// [l..M)
repi(l, L, M - 1) {
int t = M - l;
int r2 = M + S.lcp(l, n, M, n);
int l2 = l - SR.lcp(n - M, n, n - l, n);
if (r2 - l2 < 2 * t) continue;
ll h = l2 * (n + 1LL) + r2;
auto it = lr_to_t.find(h);
if (it != lr_to_t.end()) chmin(it->second, t);
else lr_to_t[h] = t;
}
// [M..r)
repi(r, M + 1, R) {
int t = r - M;
int r2 = r + S.lcp(M, n, r, n);
int l2 = M - SR.lcp(n - r, n, n - M, n);
if (r2 - l2 < 2 * t) continue;
ll h = l2 * (n + 1LL) + r2;
auto it = lr_to_t.find(h);
if (it != lr_to_t.end()) chmin(it->second, t);
else lr_to_t[h] = t;
}
rf(L, M);
rf(M, R);
};
rf(0, n);
vector<tuple<int, int, int>> res;
for (auto [lr, t] : lr_to_t) {
int l = (int)(lr / (n + 1));
int r = (int)(lr % (n + 1));
res.emplace_back(l, r, t);
}
return res;
}
//
/*
* to :
* cost :
*/
struct WEdge {
// verify : https://judge.yosupo.jp/problem/shortest_path
int to; //
int cost; //
WEdge() : to(-1), cost(-INF) {}
WEdge(int to, int cost) : to(to), cost(cost) {}
//
operator int() const { return to; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const WEdge& e) {
os << "(" << e.to << "," << e.cost << ")";
return os;
}
#endif
};
//
/*
* WGraph g
* g[v] : v
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;
//O(n + m log n)
/*
* g st gl
* INFL path
*
*
*/
int minimum_cost_path(const WGraph& g, int st, int gl, vi* path = nullptr) {
// verify : https://judge.yosupo.jp/problem/shortest_path
int n = sz(g);
vi dist(n, INF); // st
dist[st] = 0;
vi parent(n); // 1
// (, )
priority_queue_rev<pii> q;
q.emplace(0, st);
while (!q.empty()) {
auto [c, s] = q.top(); q.pop();
// 辿
if (s == gl) break;
//
if (dist[s] < c) continue;
repe(e, g[s]) {
// 辿
if (chmin(dist[e.to], dist[s] + e.cost)) {
parent[e.to] = s;
q.emplace(dist[e.to], e.to);
}
}
}
// st gl
if (dist[gl] == INF) return INF;
//
if (path != nullptr) {
path->clear();
int t = gl;
while (t != st) {
path->emplace_back(t);
t = parent[t];
}
path->emplace_back(st);
reverse(all(*path));
}
return dist[gl];
}
int naive(string s) {
int n = sz(s);
WGraph g(n + 1);
rep(l, n) repi(r, l + 1, n) {
int w = r - l;
string pat = s.substr(l, w);
rep(k, n) {
if (s.substr(l + k * w, w) != pat) break;
int c = w + sz(to_string(k + 1));
g[l].push_back({ l + (k + 1) * w, c });
}
}
// dumpel(g);
vi path;
int dist = minimum_cost_path(g, 0, n, &path);
dump(path);
return dist;
}
// 87 AC, 21 WA, 34 MLE
string WA_MLE(string s) {
int n = sz(s);
auto lrts = enumerate_cyclic_run(s);
// dump(lrts);
WGraph g(2 * (n + 1));
repi(i, 0, n) {
g[i].push_back({ (n + 1) + i, 0 });
g[(n + 1) + i].push_back({ i, 1 });
if (i < n) g[(n + 1) + i].push_back({ (n + 1) + (i + 1), 1 });
}
// dumpel(g); dump("---");
for (auto [l, r, t] : lrts) {
int L = sz(g);
g.resize(L + (r - l + 1));
repi(i, l, r) {
g[i].push_back({ L + (i - l), t });
g[L + (i - l)].push_back({ i, 1 });
if (L + (i + t - l) < sz(g)) g[L + (i - l)].push_back({ L + (i + t - l) , 0 });
}
}
// dumpel(g); // MLE
vi path;
int dist = minimum_cost_path(g, 0, n, &path);
dump(dist); dump(path);
int w = 0; int c = 0; string res; int pi = -1;
repe(i, path) {
if (0 <= i && i < n + 1) {
if (w > 0) {
repi(j, i - w, i - 1) res += s[j];
res += to_string(c);
}
w = 0;
c = 0;
}
else if (n + 1 <= i && i < 2 * (n + 1)) {
if (pi >= n + 1) w++;
c = 1;
}
else {
if (pi >= n + 1) {
w = i - pi;
c++;
}
}
pi = i;
}
return res;
}
/*
----------error!----------
input:
abbbbbbbbbbbabbaabb
results:
12 (a1 b9 bba2 abb1)
a1b11abbaabb1
--------------------------
*/
// 4 TLEs = "aaaaaaaaaaaaaaaaaaaa"
//
// TLE 70, 80, 132, 133
string TLE(const string& s) {
int n = sz(s);
vi pow10{ 1, 10, 100, 1000, 10000, 100000, 1000000 };
auto lrts = enumerate_cyclic_run(s);
// dump(lrts);
vector<vector<pii>> l2rts(n + 1);
for (auto [l, r, t] : lrts) {
repi(l2, l, r - t) {
l2rts[l2].push_back({ r, t });
}
}
dumpel(l2rts);
vi dp(2 * (n + 1), INF); vector<pii> prv(2 * (n + 1), { -1, -1 });
dp[0] = 0;
repi(l, 0, n) {
dump("--- l:", l, "---");
//
if (chmin(dp[(n + 1) + l], dp[l])) {
prv[(n + 1) + l] = { l, 0 };
}
//
if (chmin(dp[l], dp[(n + 1) + l] + 1)) {
prv[l] = { (n + 1) + l, 0 };
}
for (auto [r, t] : l2rts[l]) {
repi(e, 1, 6) {
for (int k = pow10[e - 1]; k < pow10[e]; k++) {
if (l + (ll)k * t > r) break; // RE
if (chmin(dp[l + k * t], dp[l] + t + e)) {
prv[l + k * t] = { l, t };
}
}
}
}
if (l < n) {
if (chmin(dp[(n + 1) + l + 1], dp[(n + 1) + l] + 1)) {
prv[(n + 1) + l + 1] = { (n + 1) + l, 0 };
}
}
dump(dp);
}
stack<string> stk;
int i = n; int i_bak = -1;
while (i != 0) {
auto [pi, w] = prv[i];
if (w > 0) {
int k = (i - pi) / w;
stk.push(s.substr(pi, w) + to_string(k));
}
else {
if (i <= n && pi > n) {
i_bak = i;
}
else if (i > n && pi <= n) {
stk.push(s.substr(pi, i_bak - pi) + "1");
}
}
i = pi;
}
string res;
while (!stk.empty()) {
res += stk.top(); stk.pop();
}
return res;
}
void bug_find() {
#ifdef _MSC_VER
//
mute_dump = true;
mt19937_64 mt;
mt.seed(0);
uniform_int_distribution<ll> rnd(0LL, 1LL << 60);
rep(hoge, 10000) {
int n = rnd(mt) % 100 + 1;
string s;
rep(i, n) s += "aba"[rnd(mt) % 3];
auto res_naive = naive(s);
auto res_solve = TLE(s);
if (res_naive != sz(res_solve)) {
cout << "----------error!----------" << endl;
cout << "input:" << endl;
cout << s << endl;
cout << "results:" << endl;
cout << res_naive << endl;
cout << res_solve << endl;
cout << "--------------------------" << endl;
}
}
mute_dump = false;
exit(0);
#endif
}
// WA 70, 80, 132, 133 AC
//
string uso(const string& s) {
int n = sz(s);
vi pow10{ 1, 10, 100, 1000, 10000, 100000, 1000000 };
auto lrts = enumerate_cyclic_run(s);
// dump(lrts);
vector<vector<pii>> l2rts(n + 1);
for (auto [l, r, t] : lrts) {
int l2_max = min(r - t, l + (int)1e3);
repi(l2, l, l2_max) {
l2rts[l2].push_back({ r, t });
}
int l2_min = max(l2_max + 1, r - t - (int)1e3);
repi(l2, l2_min, r - t) {
l2rts[l2].push_back({ r, t });
}
}
dumpel(l2rts);
vi dp(2 * (n + 1), INF); vector<pii> prv(2 * (n + 1), { -1, -1 });
dp[0] = 0;
repi(l, 0, n) {
dump("--- l:", l, "---");
//
if (chmin(dp[(n + 1) + l], dp[l])) {
prv[(n + 1) + l] = { l, 0 };
}
//
if (chmin(dp[l], dp[(n + 1) + l] + 1)) {
prv[l] = { (n + 1) + l, 0 };
}
for (auto [r, t] : l2rts[l]) {
repi(e, 1, 6) {
for (int k = pow10[e - 1]; k < pow10[e]; k++) {
if (l + (ll)k * t > r) break;
if (chmin(dp[l + k * t], dp[l] + t + e)) {
prv[l + k * t] = { l, t };
}
}
}
}
if (l < n) {
if (chmin(dp[(n + 1) + l + 1], dp[(n + 1) + l] + 1)) {
prv[(n + 1) + l + 1] = { (n + 1) + l, 0 };
}
}
dump(dp);
}
stack<string> stk;
int i = n; int i_bak = -1;
while (i != 0) {
auto [pi, w] = prv[i];
if (w > 0) {
int k = (i - pi) / w;
stk.push(s.substr(pi, w) + to_string(k));
}
else {
if (i <= n && pi > n) {
i_bak = i;
}
else if (i > n && pi <= n) {
stk.push(s.substr(pi, i_bak - pi) + "1");
}
}
i = pi;
}
string res;
while (!stk.empty()) {
res += stk.top(); stk.pop();
}
return res;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
//dump(mute_dump = 1);
// dump(INF = 99);
// bug_find();
int T;
cin >> T;
vector<string> ss(T);
cin >> ss;
// TLE()
ll steps = 0;
vi pow10{ 1, 10, 100, 1000, 10000, 100000, 1000000 };
rep(t, T) {
string s = ss[t];
int n = sz(s);
auto lrts = enumerate_cyclic_run(s);
vector<vector<pii>> l2rts(n + 1);
for (auto [l, r, t] : lrts) {
repi(l2, l, r - t) {
l2rts[l2].push_back({ r, t });
}
}
// dumpel(l2rts);
//vi dp(2 * (n + 1), INF); vector<pii> prv(2 * (n + 1), { -1, -1 });
//dp[0] = 0;
repi(l, 0, n) {
// dump("--- l:", l, "---");
//
steps++;
//if (chmin(dp[(n + 1) + l], dp[l])) {
// prv[(n + 1) + l] = { l, 0 };
//}
//
steps++;
//if (chmin(dp[l], dp[(n + 1) + l] + 1)) {
// prv[l] = { (n + 1) + l, 0 };
//}
for (auto [r, t] : l2rts[l]) {
repi(e, 1, 6) {
ll k_max = min<ll>(pow10[e], (r - l) / t);
ll k_min = pow10[e - 1];
dump(k_min, k_max);
steps += max(k_max - k_min + 1, 0LL); //
//for (int k = pow10[e - 1]; k < pow10[e]; k++) {
// if (l + (ll)k * t > r) break; // RE
// if (chmin(dp[l + k * t], dp[l] + t + e)) {
// prv[l + k * t] = { l, t };
// }
//}
}
}
if (l < n) {
steps++;
//if (chmin(dp[(n + 1) + l + 1], dp[(n + 1) + l] + 1)) {
// prv[(n + 1) + l + 1] = { (n + 1) + l, 0 };
//}
}
//dump(dp);
}
}
dump(steps);
dump(mute_dump = 1);
// TLE() TLE()
if (steps < (ll)1e9) {
rep(t, T) {
cout << TLE(ss[t]) << "\n";
}
}
// 4
else {
rep(t, T) {
cout << uso(ss[t]) << "\n";
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0