結果
問題 | No.2995 The Ruler Sequence Concatenation |
ユーザー |
👑 |
提出日時 | 2024-12-25 17:58:59 |
言語 | C (gcc 13.3.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,922 bytes |
コンパイル時間 | 638 ms |
コンパイル使用メモリ | 36,564 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-25 17:59:38 |
合計ジャッジ時間 | 2,629 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 5 WA * 4 |
ソースコード
#include <stdio.h>const int Mod = 998244353;long long pow_mod(int n, long long k){long long N, ans = 1;for (N = n; k > 0; k >>= 1, N = N * N % Mod) if (k & 1) ans = ans * N % Mod;return ans;}#define DIM 80void copy_matrix(int d, long long A[][DIM], long long B[][DIM]){int i, j;for (i = 0; i < d; i++) for (j = 0; j < d; j++) B[i][j] = A[i][j];}void prod_matrix(int d, long long A[][DIM], long long B[][DIM], long long C[][DIM]){int i, j, k;for (i = 0; i < d; i++) {for (j = 0; j < d; j++) {for (k = 0, C[i][j] = 0; k < d; k++) C[i][j] += A[i][k] * B[k][j] % Mod;C[i][j] %= Mod;}}}void pow_matrix(int d, long long A[][DIM], long long k, long long B[][DIM]){int i, j;long long C[2][DIM][DIM], D[DIM][DIM];copy_matrix(d, A, C[0]);for (i = 0; i < d; i++) for (j = 0; j < d; j++) B[i][j] = 0;for (i = 0; i < d; i++) B[i][i] = 1;for (i = 0, j = 1; k > 0; i ^= 1, j ^= 1, k >>= 1) {prod_matrix(d, C[i], C[i], C[j]);if (k % 2 == 1) {prod_matrix(d, B, C[i], D);copy_matrix(d, D, B);}}}void copy_vector(int d, long long x[], long long y[]){int i;for (i = 0; i < d; i++) y[i] = x[i];}void prod_matrix_vector(int d, long long A[][DIM], long long x[], long long y[]){int i, j;for (i = 0; i < d; i++) {for (j = 0, y[i] = 0; j < d; j++) y[i] += A[i][j] * x[j] % Mod;y[i] %= Mod;}}long long solve(long long n){int l;unsigned long long i, ii;long long X, Y;for (i = 1, ii = 10, l = 1, X = 0, Y = 0; i <= n && i < 10000; i++) {if (i == ii) {l++;ii *= 10;}X = ((1 + pow_mod(10, Y + l)) * X + pow_mod(10, Y) * i) % Mod;Y = (Y * 2 + l) % (Mod - 1);}if (i > n) return X;int j, k;long long A[DIM][DIM], B[DIM][DIM], x[DIM], y[DIM], tmp;for (l++; i <= n; l++) {for (ii = i + 100; i <= n && i <= ii; i++) {X = ((1 + pow_mod(10, Y + l)) * X + pow_mod(10, Y) * i) % Mod;Y = (Y * 2 + l) % (Mod - 1);}if (i > n) break;for (j = 0; j < 72; j++) for (k = 0; k < 72; k++) A[j][k] = 0;for (j = 0; j < 24; j++) {A[j][j] = 1;for (k = j + 24; k < j + 48; k++) A[j][k] = 1;}for (j = 24; j < 71; j++) {A[j][j] = 1;A[j][71] = 1;}A[71][71] = 1;for (ii = 0; ii < 24; i++, ii++) {for (j = 0, tmp = pow_mod(10, Y + l); j < 24; j++) {A[j][j] = A[j][j] * (1 + tmp) % Mod;if (ii != 0) {A[j][ii+23] = A[j][ii+23] * pow_mod(10, Y) % Mod;if (A[j][ii+23] != 0) for (k = 1; k <= 23 && ii + 23 - k >= 24; k++) A[j][ii+23-k] = A[j][ii+23-k] * (1 + tmp) % Mod;}A[j][ii+47] = A[j][ii+47] * pow_mod(10, Y) % Mod;if (A[j][ii+47] != 0) for (k = 1; k <= 23 && ii + 47 - k >= 24; k++) A[j][ii+47-k] = A[j][ii+47-k] * (1 + tmp) % Mod;}X = ((1 + pow_mod(10, Y + l)) * X + pow_mod(10, Y) * i) % Mod;Y = (Y * 2 + l) % (Mod - 1);x[ii] = X;if (i == n) return X;}for (i -= 23, ii = 1; ii < 48; i++, ii++) x[ii+23] = i;x[71] = 23;i -= 47;// for (j = 0; j < 72; j++) printf("%lld ", x[j]);for (ii = 1; ii <= i; ii *= 10);ii--;if (ii > n) ii = n;// printf("%llu %llu\n", i, ii);pow_matrix(72, A, (ii - i + 1) / 24, B);prod_matrix_vector(72, B, x, y);// for (j = 0; j < 72; j++) printf("%lld ", y[j]);X = y[0];Y = (Y * 2 + l) % (Mod - 1);for (i += (ii - i + 1) / 24 * 24; i <= ii; i++) {X = ((1 + pow_mod(10, Y + l)) * X + pow_mod(10, Y) * i) % Mod;Y = (Y * 2 + l) % (Mod - 1);}}return X;}long long naive(long long n){int l;long long i, ii, X, Y;for (i = 1, ii = 10, l = 1, X = 0, Y = 0; i <= n; i++) {if (i == ii) {l++;ii *= 10;}X = ((1 + pow_mod(10, Y + l)) * X + pow_mod(10, Y) * i) % Mod;Y = (Y * 2 + l) % (Mod - 1);// printf("%d %lld %lld\n", i, X, Y);}return X;}int main(){long long n;scanf("%lld", &n);// if (n <= 1000000) printf("%lld\n", naive(n));printf("%lld\n", solve(n));fflush(stdout);return 0;}