結果

問題 No.2961 Shiny Monster Master
ユーザー The Forsaking
提出日時 2024-12-26 14:58:04
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 42 ms / 1,777 ms
コード長 3,315 bytes
コンパイル時間 1,232 ms
コンパイル使用メモリ 121,828 KB
最終ジャッジ日時 2025-02-26 16:53:59
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 77
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:77:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   77 |         scanf("%d", &x);
      |         ~~~~~^~~~~~~~~~
main.cpp:88:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   88 |         scanf("%d%d", &l, &r);
      |         ~~~~~^~~~~~~~~~~~~~~~

ソースコード

diff #

#include <iostream>
#include <sstream>
#include <iomanip>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <queue> 
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <ctime>
#include <assert.h>
#include <deque>
#include <list>
#include <stack>


using namespace std;

#define is_mul_overflow(a, b) \
    ((b != 0) && (a > LLONG_MAX / b || a < LLONG_MIN / b))
 
typedef pair<long long, int> pli;
typedef pair<int, long long> pil;
typedef pair<long long , long long> pll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<int, pii> piii;
typedef pair<int, long long > pil;
typedef pair<long long, pii> plii;
typedef pair<double, int> pdi;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ull, ull> puu;
typedef long double ld;
const int N = 2000086, MOD = 998244353, INF = 0x3f3f3f3f, MID = 333;
const long double EPS = 1e-8;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
// int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
// int dx[8] = {2, 1, -1, -2, -2, -1, 1, 2}, dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};
int n, m, cnt;
int w[N];
vector<ll> num;
ll res;

ll lowbit(ll x) { return x & -x; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
inline double rand(double l, double r) { return (double)rand() / RAND_MAX * (r - l) + l; }
inline ll qmi(ll a, ll b, ll c) { ll res = 1; while (b) { if (b & 1) res = res * a % c; a = a * a % c; b >>= 1; } return res; }
inline ll qmi(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; }
inline double qmi(double a, ll b) { double res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } 
// inline ll C(ll a, ll b) { if (a < b) return 0; if (b > a - b) b = a - b; ll res = 1; for (ll i = 1, j = a; i <= b; i++, j--) { res = res * (j % MOD) % MOD; res = res * qmi(i, MOD - 2, MOD) % MOD; } return res; }
inline ll C(ll a, ll b, int* c) { if (a < b) return 0; ll res = 1; for (ll j = a, i = 1; i < b + 1; i++, j--) res *= j; for (ll j = a, i = 1; i < b + 1; i++, j--) res /= i; return res; }
inline int find_(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); }

int cal(int l, int r) {
    int lv = l % n ? l % n : n, rv = r % n ? r % n : n, res;

    if (lv > rv) {
        res = m - find_(lv) + (upper_bound(num.begin(), num.end(), rv) - num.begin());
    } else {
        int ll = find_(lv), rr = upper_bound(num.begin(), num.end(), rv) - num.begin();
        res = rr - ll;
    }
    return res;
}

int main() {
    cin >> n >> m;
    for (int i = 1; i < m + 1; i++) {
        int x;
        scanf("%d", &x);
        num.push_back(x + 1);
    }
    sort(num.begin(), num.end());
    num.erase(unique(num.begin(), num.end()), num.end());
    m = num.size();

    int q;
    cin >> q;
    while (q--) {
        int l, r;
        scanf("%d%d", &l, &r);
        l++, r++;

        int pl = (l + n - 1) / n * n, pr = r / n * n;
        if (pl > pr) {
            printf("%d\n", cal(l, r));
        } else {
            res = (ll)(pr - pl) / n * m + cal(l, pl) + (pr + 1 <= r ? cal(pr + 1, r) : 0);
            printf("%lld\n", res);
        }
    }
    return 0;
}
0