結果

問題 No.2964 Obstruction Bingo
ユーザー The Forsaking
提出日時 2024-12-27 18:08:29
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 359 ms / 2,468 ms
コード長 3,817 bytes
コンパイル時間 1,381 ms
コンパイル使用メモリ 118,248 KB
最終ジャッジ日時 2025-02-26 16:59:08
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 49
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:68:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   68 |     scanf("%s%s", s + 1, t + 1);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~
main.cpp:70:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   70 |         scanf("%d", w + i);
      |         ~~~~~^~~~~~~~~~~~~

ソースコード

diff #

#include <iostream>
#include <sstream>
#include <iomanip>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <queue> 
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <ctime>
#include <assert.h>
#include <deque>
#include <list>
#include <stack>


using namespace std;

#define is_mul_overflow(a, b) \
    ((b != 0) && (a > LLONG_MAX / b || a < LLONG_MIN / b))
 
typedef pair<long long, int> pli;
typedef pair<int, long long> pil;
typedef pair<long long , long long> pll;
typedef pair<int, int> pii;
typedef pair<double, double> pdd;
typedef pair<int, pii> piii;
typedef pair<int, long long > pil;
typedef pair<long long, pii> plii;
typedef pair<double, int> pdi;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ull, ull> puu;
typedef long double ld;
const int N = 2000086, MOD = 998244353, INF = 0x3f3f3f3f, MID = 333;
const long double EPS = 1e-8;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
// int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[8] = {0, 1, 1, 1, 0, -1, -1, -1};
// int dx[8] = {2, 1, -1, -2, -2, -1, 1, 2}, dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};
int n, m, cnt;
int w[N];
vector<ll> num;
ll res;

ll lowbit(ll x) { return x & -x; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
inline double rand(double l, double r) { return (double)rand() / RAND_MAX * (r - l) + l; }
inline ll qmi(ll a, ll b, ll c) { ll res = 1; while (b) { if (b & 1) res = res * a % c; a = a * a % c; b >>= 1; } return res; }
inline ll qmi(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; }
inline double qmi(double a, ll b) { double res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } 
// inline ll C(ll a, ll b) { if (a < b) return 0; if (b > a - b) b = a - b; ll res = 1; for (ll i = 1, j = a; i <= b; i++, j--) { res = res * (j % MOD) % MOD; res = res * qmi(i, MOD - 2, MOD) % MOD; } return res; }
inline ll C(ll a, ll b, int* c) { if (a < b) return 0; ll res = 1; for (ll j = a, i = 1; i < b + 1; i++, j--) res *= j; for (ll j = a, i = 1; i < b + 1; i++, j--) res /= i; return res; }
inline int find_(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); }

char s[120], t[120];
int mid = 60;
ll sum = 0, v[228], rev[228];
ll f[508][508][130];

int main() {
    cin >> n >> m;
    scanf("%s%s", s + 1, t + 1);
    for (int i = 'a'; i <= 'z'; i++) {
        scanf("%d", w + i);
        sum += w[i];
    }
    for (int i = 'a'; i <= 'z'; i++) v[i] = w[i] * qmi(sum, MOD - 2, MOD) % MOD, rev[i] = (1 - v[i] + MOD) % MOD;
    ll v1 = 0, v2 = 0;

    f[0][1][mid] = 1;
    for (int i = 1; i < m + 1; i++)
        for (int j = 1; j <= i + 1; j++)
            for (int k = max(1, j - n); k <= min(i + 1, j + n); k++) {
                int x = j % n ? j % n : n, y = k % n ? k % n : n;
                int px = x == 1 ? n : x - 1, py = y == 1 ? n : y - 1;
                int d = k - j;

                f[i][j][mid + d] = f[i - 1][j][mid + d] * ((1 - v[s[x]] - (s[x] != t[y] ? v[t[y]] : 0) + 2 * MOD) % MOD) % MOD;
                if (s[px] == t[py]) f[i][j][mid + d] = (f[i][j][mid + d] + f[i - 1][j - 1][mid + d] * v[s[px]] % MOD) % MOD;
                if (s[px] != t[y]) f[i][j][mid + d] = (f[i][j][mid + d] + f[i - 1][j - 1][mid + d + 1] * v[s[px]] % MOD) % MOD;
                if (s[x] != t[py]) f[i][j][mid + d] = (f[i][j][mid + d] + f[i - 1][j][mid + d - 1] * v[t[py]] % MOD) % MOD;
                
                if (j - k == n) v1 = (v1 + f[i][j][mid + d]) % MOD;
                if (k - j == n) v2 = (v2 + f[i][j][mid + d]) % MOD;
                if (abs(j - k) == n) f[i][j][mid + d] = 0;
            }
    printf("%lld %lld\n", v1, v2);
    return 0;
}
0