結果
問題 | No.2964 Obstruction Bingo |
ユーザー |
|
提出日時 | 2024-12-27 18:08:29 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 359 ms / 2,468 ms |
コード長 | 3,817 bytes |
コンパイル時間 | 1,381 ms |
コンパイル使用メモリ | 118,248 KB |
最終ジャッジ日時 | 2025-02-26 16:59:08 |
ジャッジサーバーID (参考情報) |
judge2 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 49 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:68:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 68 | scanf("%s%s", s + 1, t + 1); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~ main.cpp:70:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 70 | scanf("%d", w + i); | ~~~~~^~~~~~~~~~~~~
ソースコード
#include <iostream> #include <sstream> #include <iomanip> #include <cstring> #include <string> #include <algorithm> #include <cmath> #include <map> #include <set> #include <vector> #include <queue> #include <unordered_set> #include <unordered_map> #include <bitset> #include <ctime> #include <assert.h> #include <deque> #include <list> #include <stack> using namespace std; #define is_mul_overflow(a, b) \ ((b != 0) && (a > LLONG_MAX / b || a < LLONG_MIN / b)) typedef pair<long long, int> pli; typedef pair<int, long long> pil; typedef pair<long long , long long> pll; typedef pair<int, int> pii; typedef pair<double, double> pdd; typedef pair<int, pii> piii; typedef pair<int, long long > pil; typedef pair<long long, pii> plii; typedef pair<double, int> pdi; typedef long long ll; typedef unsigned long long ull; typedef pair<ull, ull> puu; typedef long double ld; const int N = 2000086, MOD = 998244353, INF = 0x3f3f3f3f, MID = 333; const long double EPS = 1e-8; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; // int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}, dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; // int dx[8] = {2, 1, -1, -2, -2, -1, 1, 2}, dy[8] = {1, 2, 2, 1, -1, -2, -2, -1}; int n, m, cnt; int w[N]; vector<ll> num; ll res; ll lowbit(ll x) { return x & -x; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } inline double rand(double l, double r) { return (double)rand() / RAND_MAX * (r - l) + l; } inline ll qmi(ll a, ll b, ll c) { ll res = 1; while (b) { if (b & 1) res = res * a % c; a = a * a % c; b >>= 1; } return res; } inline ll qmi(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } inline double qmi(double a, ll b) { double res = 1; while (b) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } // inline ll C(ll a, ll b) { if (a < b) return 0; if (b > a - b) b = a - b; ll res = 1; for (ll i = 1, j = a; i <= b; i++, j--) { res = res * (j % MOD) % MOD; res = res * qmi(i, MOD - 2, MOD) % MOD; } return res; } inline ll C(ll a, ll b, int* c) { if (a < b) return 0; ll res = 1; for (ll j = a, i = 1; i < b + 1; i++, j--) res *= j; for (ll j = a, i = 1; i < b + 1; i++, j--) res /= i; return res; } inline int find_(int x) { return lower_bound(num.begin(), num.end(), x) - num.begin(); } char s[120], t[120]; int mid = 60; ll sum = 0, v[228], rev[228]; ll f[508][508][130]; int main() { cin >> n >> m; scanf("%s%s", s + 1, t + 1); for (int i = 'a'; i <= 'z'; i++) { scanf("%d", w + i); sum += w[i]; } for (int i = 'a'; i <= 'z'; i++) v[i] = w[i] * qmi(sum, MOD - 2, MOD) % MOD, rev[i] = (1 - v[i] + MOD) % MOD; ll v1 = 0, v2 = 0; f[0][1][mid] = 1; for (int i = 1; i < m + 1; i++) for (int j = 1; j <= i + 1; j++) for (int k = max(1, j - n); k <= min(i + 1, j + n); k++) { int x = j % n ? j % n : n, y = k % n ? k % n : n; int px = x == 1 ? n : x - 1, py = y == 1 ? n : y - 1; int d = k - j; f[i][j][mid + d] = f[i - 1][j][mid + d] * ((1 - v[s[x]] - (s[x] != t[y] ? v[t[y]] : 0) + 2 * MOD) % MOD) % MOD; if (s[px] == t[py]) f[i][j][mid + d] = (f[i][j][mid + d] + f[i - 1][j - 1][mid + d] * v[s[px]] % MOD) % MOD; if (s[px] != t[y]) f[i][j][mid + d] = (f[i][j][mid + d] + f[i - 1][j - 1][mid + d + 1] * v[s[px]] % MOD) % MOD; if (s[x] != t[py]) f[i][j][mid + d] = (f[i][j][mid + d] + f[i - 1][j][mid + d - 1] * v[t[py]] % MOD) % MOD; if (j - k == n) v1 = (v1 + f[i][j][mid + d]) % MOD; if (k - j == n) v2 = (v2 + f[i][j][mid + d]) % MOD; if (abs(j - k) == n) f[i][j][mid + d] = 0; } printf("%lld %lld\n", v1, v2); return 0; }