結果

問題 No.1301 Strange Graph Shortest Path
ユーザー umimel
提出日時 2024-12-28 19:24:48
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 404 ms / 3,000 ms
コード長 5,516 bytes
コンパイル時間 2,536 ms
コンパイル使用メモリ 183,972 KB
実行使用メモリ 94,928 KB
最終ジャッジ日時 2024-12-28 19:25:07
合計ジャッジ時間 16,357 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60LL;
const int IINF = (1 << 30) - 2;
template<typename T>
struct edge{
int from;
int to;
T cost;
int id;
edge(){}
edge(int to, T cost=1) : from(-1), to(to), cost(cost){}
edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}
edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}
void reverse(){swap(from, to);}
};
template<typename T>
struct edges : std::vector<edge<T>>{
void sort(){
std::sort(
(*this).begin(),
(*this).end(),
[](const edge<T>& a, const edge<T>& b){
return a.cost < b.cost;
}
);
}
};
template<typename T = bool>
struct graph : std::vector<edges<T>>{
private:
int n = 0;
int m = 0;
edges<T> es;
bool dir;
public:
graph(int n, bool dir) : n(n), dir(dir){
(*this).resize(n);
}
void add_edge(int from, int to, T cost=1){
if(dir){
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m++));
}else{
if(from > to) swap(from, to);
es.push_back(edge<T>(from, to, cost, m));
(*this)[from].push_back(edge<T>(from, to, cost, m));
(*this)[to].push_back(edge<T>(to, from, cost, m++));
}
}
int get_vnum(){
return n;
}
int get_enum(){
return m;
}
bool get_dir(){
return dir;
}
edge<T> get_edge(int i){
return es[i];
}
edges<T> get_edge_set(){
return es;
}
};
template<typename T>
struct redge{
int from, to;
T cap, cost;
int rev;
redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}
redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}
};
template<typename T> using Edges = vector<edge<T>>;
template<typename T> using weighted_graph = vector<Edges<T>>;
template<typename T> using tree = vector<Edges<T>>;
using unweighted_graph = vector<vector<int>>;
template<typename T> using residual_graph = vector<vector<redge<T>>>;
template<typename T>
struct mincostflow{
residual_graph<T> G;
const T TINF = std::numeric_limits<T>::max() / 2;
int n;
mincostflow(residual_graph<T> &G_){
n = (int)G_.size();
G.resize(n);
for(int from=0; from<n; from++){
for(redge<T> e : G_[from]){
G[from].push_back(redge<T>(e.to, e.cap, e.cost, (int)G[e.to].size()));
G[e.to].pb(redge<T>(from, 0, -e.cost, (int)G[from].size()-1));
}
}
}
T flow(int s, int t, T f){
residual_graph<T> H(n);
vector<T> h(n, 0); //
vector<T> dist(n, 0); //
vector<int> prevv(n, 0); //
vector<int> preve(n, 0); //
for(int from=0; from<n; from++){
for(redge<T> e : G[from]){
H[from].push_back(e);
}
}
T res = 0;
while(f > 0){
//h
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> PQ;
for(int i=0; i<n; i++) dist[i] = TINF;
dist[s] = 0;
PQ.push({0, s});
while(!PQ.empty()){
pair<T, int> p = PQ.top();
PQ.pop();
int v = p.se;
if(dist[v] < p.fi) continue;
for(int i=0; i<(int)H[v].size(); i++){
redge<T> &e = H[v][i];
if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]){
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
PQ.push({dist[e.to], e.to});
}
}
}
if(dist[t] == TINF){
//
return -1;
}
for(int v=0; v<n; v++) h[v] += dist[v];
// s-t沿
T d = f;
for(int v=t; v!=s; v=prevv[v]){
d = min(d, H[prevv[v]][preve[v]].cap);
}
f -= d;
res += d*h[t];
for(int v=t; v!=s; v=prevv[v]){
redge<T> &e = H[prevv[v]][preve[v]];
e.cap -= d;
H[v][e.rev].cap += d;
}
}
return res;
}
};
void solve(){
int n, m; cin >> n >> m;
residual_graph<ll> G(n);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
ll c, d; cin >> c >> d;
u--; v--;
G[u].pb(redge<ll>(v, 1, d));
G[u].pb(redge<ll>(v, 1, c));
G[v].pb(redge<ll>(u, 1, d));
G[v].pb(redge<ll>(u, 1, c));
}
mincostflow<ll> mcf(G);
cout << mcf.flow(0, n-1, 2) << endl;
}
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
int T=1;
//cin >> T;
while(T--) solve();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0