結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー |
|
提出日時 | 2024-12-28 19:24:48 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 404 ms / 3,000 ms |
コード長 | 5,516 bytes |
コンパイル時間 | 2,536 ms |
コンパイル使用メモリ | 183,972 KB |
実行使用メモリ | 94,928 KB |
最終ジャッジ日時 | 2024-12-28 19:25:07 |
合計ジャッジ時間 | 16,357 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 33 |
ソースコード
#include<bits/stdc++.h>using namespace std;using ll = long long;#define all(a) (a).begin(), (a).end()#define pb push_back#define fi first#define se secondmt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());const ll MOD1000000007 = 1000000007;const ll MOD998244353 = 998244353;const ll MOD[3] = {999727999, 1070777777, 1000000007};const ll LINF = 1LL << 60LL;const int IINF = (1 << 30) - 2;template<typename T>struct edge{int from;int to;T cost;int id;edge(){}edge(int to, T cost=1) : from(-1), to(to), cost(cost){}edge(int from, int to, T cost) : from(from), to(to), cost(cost) {}edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){}void reverse(){swap(from, to);}};template<typename T>struct edges : std::vector<edge<T>>{void sort(){std::sort((*this).begin(),(*this).end(),[](const edge<T>& a, const edge<T>& b){return a.cost < b.cost;});}};template<typename T = bool>struct graph : std::vector<edges<T>>{private:int n = 0;int m = 0;edges<T> es;bool dir;public:graph(int n, bool dir) : n(n), dir(dir){(*this).resize(n);}void add_edge(int from, int to, T cost=1){if(dir){es.push_back(edge<T>(from, to, cost, m));(*this)[from].push_back(edge<T>(from, to, cost, m++));}else{if(from > to) swap(from, to);es.push_back(edge<T>(from, to, cost, m));(*this)[from].push_back(edge<T>(from, to, cost, m));(*this)[to].push_back(edge<T>(to, from, cost, m++));}}int get_vnum(){return n;}int get_enum(){return m;}bool get_dir(){return dir;}edge<T> get_edge(int i){return es[i];}edges<T> get_edge_set(){return es;}};template<typename T>struct redge{int from, to;T cap, cost;int rev;redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){}redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){}};template<typename T> using Edges = vector<edge<T>>;template<typename T> using weighted_graph = vector<Edges<T>>;template<typename T> using tree = vector<Edges<T>>;using unweighted_graph = vector<vector<int>>;template<typename T> using residual_graph = vector<vector<redge<T>>>;template<typename T>struct mincostflow{residual_graph<T> G;const T TINF = std::numeric_limits<T>::max() / 2;int n;mincostflow(residual_graph<T> &G_){n = (int)G_.size();G.resize(n);for(int from=0; from<n; from++){for(redge<T> e : G_[from]){G[from].push_back(redge<T>(e.to, e.cap, e.cost, (int)G[e.to].size()));G[e.to].pb(redge<T>(from, 0, -e.cost, (int)G[from].size()-1));}}}T flow(int s, int t, T f){residual_graph<T> H(n);vector<T> h(n, 0); //ポテンシャルvector<T> dist(n, 0); //最短距離vector<int> prevv(n, 0); // 直前の頂点vector<int> preve(n, 0); // 直前の辺for(int from=0; from<n; from++){for(redge<T> e : G[from]){H[from].push_back(e);}}T res = 0;while(f > 0){//ダイクストラ法を用いてhを更新priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> PQ;for(int i=0; i<n; i++) dist[i] = TINF;dist[s] = 0;PQ.push({0, s});while(!PQ.empty()){pair<T, int> p = PQ.top();PQ.pop();int v = p.se;if(dist[v] < p.fi) continue;for(int i=0; i<(int)H[v].size(); i++){redge<T> &e = H[v][i];if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]){dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];prevv[e.to] = v;preve[e.to] = i;PQ.push({dist[e.to], e.to});}}}if(dist[t] == TINF){//これ以上流せないreturn -1;}for(int v=0; v<n; v++) h[v] += dist[v];// s-t間最短経路に沿って目一杯流すT d = f;for(int v=t; v!=s; v=prevv[v]){d = min(d, H[prevv[v]][preve[v]].cap);}f -= d;res += d*h[t];for(int v=t; v!=s; v=prevv[v]){redge<T> &e = H[prevv[v]][preve[v]];e.cap -= d;H[v][e.rev].cap += d;}}return res;}};void solve(){int n, m; cin >> n >> m;residual_graph<ll> G(n);for(int i=0; i<m; i++){int u, v; cin >> u >> v;ll c, d; cin >> c >> d;u--; v--;G[u].pb(redge<ll>(v, 1, d));G[u].pb(redge<ll>(v, 1, c));G[v].pb(redge<ll>(u, 1, d));G[v].pb(redge<ll>(u, 1, c));}mincostflow<ll> mcf(G);cout << mcf.flow(0, n-1, 2) << endl;}int main(){cin.tie(nullptr);ios::sync_with_stdio(false);int T=1;//cin >> T;while(T--) solve();}