結果
問題 | No.8030 ミラー・ラビン素数判定法のテスト |
ユーザー | sortA0329 |
提出日時 | 2024-12-30 20:50:43 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 19 ms / 9,973 ms |
コード長 | 28,164 bytes |
コンパイル時間 | 4,251 ms |
コンパイル使用メモリ | 91,464 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-30 20:50:49 |
合計ジャッジ時間 | 3,355 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 14 ms
5,248 KB |
testcase_05 | AC | 16 ms
5,248 KB |
testcase_06 | AC | 14 ms
5,248 KB |
testcase_07 | AC | 14 ms
5,248 KB |
testcase_08 | AC | 15 ms
5,248 KB |
testcase_09 | AC | 19 ms
5,248 KB |
ソースコード
/** * libcpprime https://github.com/sortA0329/libcpprime * * MIT License * * Copyright (c) 2024 Rac * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. **/ #ifndef LIBCPPRIME_INCLUDED_IS_PRIME_NO_TABLE #define LIBCPPRIME_INCLUDED_IS_PRIME_NO_TABLE /** * libcpprime https://github.com/sortA0329/libcpprime * * MIT License * * Copyright (c) 2024 Rac * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. **/ /** * * The algorithm in this library is based on Bradley Berg's method. * See this page for more information: https://www.techneon.com/download/is.prime.32.base.data * * Copyright 2018 Bradley Berg < (My last name) @ t e c h n e o n . c o m > * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * This algorithm is deliberately unpatented. The license above also * lets you even freely use it in commercial code. * * Primality testing using a hash table of bases originated with Steven Worley. * **/ #ifndef LIBCPPRIME_INCLUDED_IS_PRIME_COMMON #define LIBCPPRIME_INCLUDED_IS_PRIME_COMMON #include <cstdint> #ifdef __has_include #if __has_include(<type_traits>) #include <type_traits> #endif #if __has_include(<bit>) #include <bit> #endif #endif #ifdef _MSC_VER #include <intrin.h> #include <immintrin.h> #pragma intrinsic(_tzcnt_u64, _lzcnt_u64, _umul128, __umulh) #if _MSC_VER >= 1900 #pragma intrinsic(_udiv128) #endif #endif #if defined(__cpp_lib_is_constant_evaluated) && defined(__cpp_lib_bitops) #define LIBCPPRIME_CONSTEXPR constexpr #else #define LIBCPPRIME_CONSTEXPR #endif #ifdef __cpp_if_constexpr #define LIBCPPRIME_IF_CONSTEXPR constexpr #else #define LIBCPPRIME_IF_CONSTEXPR #endif namespace cppr { namespace internal { struct Int64Pair { std::uint64_t high, low; }; LIBCPPRIME_CONSTEXPR void Assume(const bool f) noexcept { #ifdef __cpp_lib_is_constant_evaluated if (std::is_constant_evaluated()) return; #endif #if defined(__clang__) #if __has_builtin(__builtin_assume) __builtin_assume(f); #endif #elif defined(__GNUC__) if (!f) __builtin_unreachable(); #elif defined(_MSC_VER) __assume(f); #endif } LIBCPPRIME_CONSTEXPR std::int32_t CountrZero(std::uint64_t n) noexcept { #ifdef __cpp_lib_bitops Assume(n != 0); return std::countr_zero(n); #elif defined(__GNUC__) return __builtin_ctzll(n); #elif defined(_MSC_VER) return _tzcnt_u64(n); #else std::uint64_t x = (n ^ (n - 1)) >> 1; x = x - ((x >> 1) & 0x5555555555555555); x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333); x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f; x = x + (x >> 8); x = x + (x >> 16); x = x + (x >> 32); return x & 0x0000007f; #endif } #if !defined(__cpp_lib_bitops) && !defined(__GNUC__) && !defined(_MSC_VER) LIBCPPRIME_CONSTEXPR const char CountlZeroTable[32] = { 0, 31, 9, 30, 3, 8, 13, 29, 2, 5, 7, 21, 12, 24, 28, 19, 1, 10, 4, 14, 6, 22, 25, 20, 11, 15, 23, 26, 16, 27, 17, 18 }; #endif LIBCPPRIME_CONSTEXPR std::int32_t CountlZero(std::uint64_t n) noexcept { #ifdef __cpp_lib_bitops Assume(n != 0); return std::countl_zero(n); #elif defined(__GNUC__) return __builtin_clzll(n); #elif defined(_MSC_VER) return _lzcnt_u64(n); #else std::int32_t offset = 0; std::uint32_t x = n >> 32; if (n <= 0xffffffff) { offset = 32; x = n; } x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return offset + CountlZeroTable[(x * 0x076be629u) >> 27]; #endif } LIBCPPRIME_CONSTEXPR Int64Pair Mulu128(std::uint64_t muler, std::uint64_t mulnd) noexcept { #if defined(__SIZEOF_INT128__) __uint128_t tmp = static_cast<__uint128_t>(muler) * mulnd; return { static_cast<std::uint64_t>(tmp >> 64), static_cast<std::uint64_t>(tmp) }; #else #if defined(_MSC_VER) #ifdef __cpp_lib_is_constant_evaluated if (!std::is_constant_evaluated()) #endif { std::uint64_t high; std::uint64_t low = _umul128(muler, mulnd, &high); return { high, low }; } #endif std::uint64_t u1 = (muler & 0xffffffff); std::uint64_t v1 = (mulnd & 0xffffffff); std::uint64_t t = (u1 * v1); std::uint64_t w3 = (t & 0xffffffff); std::uint64_t k = (t >> 32); muler >>= 32; t = (muler * v1) + k; k = (t & 0xffffffff); std::uint64_t w1 = (t >> 32); mulnd >>= 32; t = (u1 * mulnd) + k; k = (t >> 32); return { (muler * mulnd) + w1 + k, (t << 32) + w3 }; #endif } LIBCPPRIME_CONSTEXPR std::uint64_t Mulu128High(std::uint64_t muler, std::uint64_t mulnd) noexcept { #if defined(__SIZEOF_INT128__) return static_cast<std::uint64_t>((static_cast<__uint128_t>(muler) * mulnd) >> 64); #else #if defined(_MSC_VER) #ifdef __cpp_lib_is_constant_evaluated if (!std::is_constant_evaluated()) #endif return __umulh(muler, mulnd); #endif return Mulu128(muler, mulnd).high; #endif } LIBCPPRIME_CONSTEXPR Int64Pair Divu128(std::uint64_t high, std::uint64_t low, std::uint64_t div) noexcept { #if (defined(__GNUC__) || defined(__ICC)) && defined(__x86_64__) if LIBCPPRIME_IF_CONSTEXPR (sizeof(void*) == 8) { #ifdef __cpp_lib_is_constant_evaluated if (!std::is_constant_evaluated()) #endif { std::uint64_t res = 0, rem = 0; __asm__("divq %[v]" : "=a"(res), "=d"(rem) : [v] "r"(div), "a"(low), "d"(high)); return { res, rem }; } } #elif defined(_MSC_VER) && _MSC_VER >= 1900 #ifdef __cpp_lib_is_constant_evaluated if (!std::is_constant_evaluated()) #endif { std::uint64_t rem = 0; std::uint64_t res = _udiv128(high, low, div, &rem); return { res, rem }; } #endif #if defined(__SIZEOF_INT128__) __uint128_t n = (static_cast<__uint128_t>(high) << 64 | low); __uint128_t res = n / div; return { static_cast<std::uint64_t>(res), static_cast<std::uint64_t>(n - res * div) }; #else std::uint64_t res = 0; std::uint64_t cur = high; for (std::uint64_t i = 0; i != 64; ++i) { std::uint64_t large = cur >> 63; cur = cur << 1 | (low >> 63); low <<= 1; large |= (cur >= div); res = res << 1 | large; cur -= div & (0 - large); } return { res, cur }; #endif } LIBCPPRIME_CONSTEXPR std::uint32_t GCD32(std::uint32_t x, std::uint32_t y) noexcept { if (x == 0) return 0; const std::int32_t n = CountrZero(x); const std::int32_t m = CountrZero(y); const std::int32_t l = n < m ? n : m; x >>= n; y >>= m; while (x != y) { const std::uint32_t a = y - x, b = x - y; const std::int32_t m = CountrZero(a), n = CountrZero(b); Assume(m == n); const std::uint32_t s = y < x ? b : a; const std::uint32_t t = x < y ? x : y; x = s >> m; y = t; } return x << l; } template<std::int32_t Strict = 0> class MontgomeryModint64Impl { std::uint64_t mod_ = 0, rs = 0, nr = 0, np = 0; LIBCPPRIME_CONSTEXPR std::uint64_t reduce(const std::uint64_t n) const noexcept { std::uint64_t q = n * nr; if LIBCPPRIME_IF_CONSTEXPR (Strict == 1) { std::uint64_t m = Mulu128High(q, mod_); return m <= mod_ ? mod_ - m : 0 - m; } else if LIBCPPRIME_IF_CONSTEXPR (Strict == 2) { auto m = Mulu128(q, mod_); std::uint64_t t = m.high + std::uint64_t(m.low + n < m.low); return t - mod_ * (t >= mod_); } else { std::uint64_t m = Mulu128High(q, mod_); return mod_ - m; } } LIBCPPRIME_CONSTEXPR std::uint64_t reduce(const std::uint64_t a, const std::uint64_t b) const noexcept { auto tmp = Mulu128(a, b); std::uint64_t d = tmp.high, c = tmp.low; std::uint64_t q = c * nr; if LIBCPPRIME_IF_CONSTEXPR (Strict == 1) { std::uint64_t m = Mulu128High(q, mod_); std::uint64_t t = d - m; return t >= mod_ ? t + mod_ : t; } else if LIBCPPRIME_IF_CONSTEXPR (Strict == 2) { auto m = Mulu128(q, mod_); std::uint64_t t = m.high + std::uint64_t(m.low + c < m.low); if (t >= mod_ - d) return t + d - mod_; else return t + d; } else { std::uint64_t m = Mulu128High(q, mod_); return d + mod_ - m; } } public: LIBCPPRIME_CONSTEXPR MontgomeryModint64Impl() noexcept {} LIBCPPRIME_CONSTEXPR void set(std::uint64_t n) noexcept { Assume(n > 2 && n % 2 != 0); mod_ = n; rs = Divu128(0xffffffffffffffff % n, 0 - n, n).low; nr = n; for (std::uint32_t i = 0; i != 5; ++i) nr *= 2 - n * nr; if LIBCPPRIME_IF_CONSTEXPR (Strict == 2) nr = 0 - nr; np = reduce(rs); } LIBCPPRIME_CONSTEXPR std::uint64_t build(std::uint32_t x) const noexcept { return reduce(x % mod_, rs); } LIBCPPRIME_CONSTEXPR std::uint64_t build(std::uint64_t x) const noexcept { return reduce(x % mod_, rs); } LIBCPPRIME_CONSTEXPR std::uint64_t raw(std::uint64_t x) const noexcept { Assume(x < mod_); return reduce(x, rs); } LIBCPPRIME_CONSTEXPR std::uint64_t one() const noexcept { if LIBCPPRIME_IF_CONSTEXPR (Strict) { Assume(np < mod_); return np; } else { Assume(np < 2 * mod_); return np; } } LIBCPPRIME_CONSTEXPR std::uint64_t neg(std::uint64_t x) const noexcept { if LIBCPPRIME_IF_CONSTEXPR (Strict) { Assume(x < mod_); return (mod_ - x) * (x != 0); } else { Assume(x < 2 * mod_); return (2 * mod_ - x) * (x != 0); } } LIBCPPRIME_CONSTEXPR std::uint64_t mul(std::uint64_t x, std::uint64_t y) const noexcept { if LIBCPPRIME_IF_CONSTEXPR (Strict) { Assume(x < mod_ && y < mod_); return reduce(x, y); } else { Assume(x < 2 * mod_ && y < 2 * mod_); return reduce(x, y); } } LIBCPPRIME_CONSTEXPR bool same(std::uint64_t x, std::uint64_t y) const noexcept { if LIBCPPRIME_IF_CONSTEXPR (Strict) { Assume(x < mod_ && y < mod_); return x == y; } else { Assume(x < 2 * mod_ && y < 2 * mod_); std::uint64_t tmp = x - y; return (tmp == 0) || (tmp == mod_) || (tmp == 0 - mod_); } } LIBCPPRIME_CONSTEXPR bool is_zero(std::uint64_t x) const noexcept { if LIBCPPRIME_IF_CONSTEXPR (Strict) { Assume(x < mod_); return x == 0; } else { Assume(x < 2 * mod_); return x == 0 || x == mod_; } } LIBCPPRIME_CONSTEXPR std::uint64_t add(std::uint64_t x, std::uint64_t y) const noexcept { if LIBCPPRIME_IF_CONSTEXPR (Strict) { Assume(x < mod_ && y < mod_); return x + y - (x >= mod_ - y) * mod_; } else { Assume(x < 2 * mod_ && y < 2 * mod_); return x + y - (x >= 2 * mod_ - y) * (2 * mod_); } } LIBCPPRIME_CONSTEXPR std::uint64_t sub(std::uint64_t x, std::uint64_t y) const noexcept { if LIBCPPRIME_IF_CONSTEXPR (Strict) { Assume(x < mod_ && y < mod_); return x - y + (x < y) * mod_; } else { Assume(x < 2 * mod_ && y < 2 * mod_); return x - y + (x < y) * (2 * mod_); } } }; // clang-format off LIBCPPRIME_CONSTEXPR const std::uint16_t Bases[256] = { 1216,1836,8885,4564,10978,5228,15613,13941,1553,173,3615,3144,10065,9259,233,2362,6244,6431,10863,5920,6408,6841,22124,2290,45597,6935,4835,7652,1051,445,5807,842,1534,22140,1282,1733,347,6311,14081,11157,186,703,9862,15490,1720,17816,10433,49185,2535,9158,2143,2840,664,29074,24924,1035,41482,1065,10189,8417,130,4551,5159,48886, 786,1938,1013,2139,7171,2143,16873,188,5555,42007,1045,3891,2853,23642,148,3585,3027,280,3101,9918,6452,2716,855,990,1925,13557,1063,6916,4965,4380,587,3214,1808,1036,6356,8191,6783,14424,6929,1002,840,422,44215,7753,5799,3415,231,2013,8895,2081,883,3855,5577,876,3574,1925,1192,865,7376,12254,5952,2516,20463,186, 5411,35353,50898,1084,2127,4305,115,7821,1265,16169,1705,1857,24938,220,3650,1057,482,1690,2718,4309,7496,1515,7972,3763,10954,2817,3430,1423,714,6734,328,2581,2580,10047,2797,155,5951,3817,54850,2173,1318,246,1807,2958,2697,337,4871,2439,736,37112,1226,527,7531,5418,7242,2421,16135,7015,8432,2605,5638,5161,11515,14949, 748,5003,9048,4679,1915,7652,9657,660,3054,15469,2910,775,14106,1749,136,2673,61814,5633,1244,2567,4989,1637,1273,11423,7974,7509,6061,531,6608,1088,1627,160,6416,11350,921,306,18117,1238,463,1722,996,3866,6576,6055,130,24080,7331,3922,8632,2706,24108,32374,4237,15302,287,2296,1220,20922,3350,2089,562,11745,163,11951 }; // clang-format on LIBCPPRIME_CONSTEXPR bool IsPrime32(const std::uint32_t x) noexcept { if (x < 151321) { const std::uint32_t a = Divu128(272518712866683587ull % x, 10755835586592736005ull, x).low; if (a == 0) return false; if (x < 11881) return GCD32(a, x) == 1; const std::uint32_t b = Divu128(827936745744686818ull % x, 10132550402535125089ull, x).low; if (b == 0) return false; if (x < 39601) return GCD32((a * b) % x, x) == 1; const std::uint32_t c = Divu128(9647383993136055606ull % x, 17068348107132031867ull, x).low * a * b % x; if (c == 0) return false; if (x < 85849) return GCD32(c, x) == 1; const std::uint32_t d = Divu128(5118528107581154032ull % x, 7251394891134766417ull, x).low; if (d == 0) return false; return GCD32(std::uint64_t(c) * d % x, x) == 1; } const std::uint32_t h = x * 0xad625b89; std::uint32_t d = x - 1; std::uint32_t pw = static_cast<std::uint32_t>(Bases[h >> 24]); std::uint32_t s = CountrZero(d); d >>= s; std::uint32_t cur = pw; if (d != 1) { pw = std::uint64_t(pw) * pw % x; d >>= 1; while (d != 1) { std::uint32_t tmp = std::uint64_t(pw) * pw % x; if (d & 1) cur = std::uint64_t(cur) * pw % x; pw = tmp; d >>= 1; } cur = std::uint64_t(cur) * pw % x; } bool flag = cur == 1 || cur == x - 1; if (x % 4 == 3) return flag; if (flag) return true; while (--s) { cur = std::uint64_t(cur) * cur % x; if (cur == x - 1) return true; } return false; } } // namespace internal } // namespace cppr #endif namespace cppr { namespace internal { LIBCPPRIME_CONSTEXPR const std::uint32_t FlagTable10[32] = { 0xa08a28acu, 0x28208a20u, 0x2088288u, 0x800228a2u, 0x20a00a08u, 0x80282088u, 0x800800a2u, 0x8028228u, 0xa20a082u, 0x22880020u, 0x28020800u, 0x88208082u, 0x2022020u, 0x8828028u, 0x8008a202u, 0x20880880u, 0x20000a00u, 0xa082008u, 0x82820802u, 0x800a20u, 0x28208au, 0x20080822u, 0x20808020u, 0x2208088u, 0x20080022u, 0x28a00a00u, 0x8a200080u, 0x8a2000u, 0x808800u, 0x2082202u, 0x80820880u, 0x28220020u }; LIBCPPRIME_CONSTEXPR bool IsPrime10(const std::uint64_t n) noexcept { return (FlagTable10[n / 32] >> (n % 32)) & 1; } LIBCPPRIME_CONSTEXPR std::uint64_t GetLucasBase(const std::uint64_t x) noexcept { std::uint32_t tmp = x % 5; if (tmp == 2 || tmp == 3) return 5; tmp = x % 13; if (tmp == 2 || tmp == 5 || tmp == 6 || tmp == 7 || tmp == 8 || tmp == 11) return 13; tmp = x % 17; if (tmp == 3 || tmp == 5 || tmp == 6 || tmp == 7 || tmp == 10 || tmp == 11 || tmp == 12 || tmp == 14) return 17; tmp = x % 21; if (tmp == 2 || tmp == 8 || tmp == 10 || tmp == 11 || tmp == 13 || tmp == 19) return 21; tmp = x % 29; if (tmp == 0) return 0; if (tmp == 2 || tmp == 3 || tmp == 8 || tmp == 10 || tmp == 11 || tmp == 12 || tmp == 14 || tmp == 15 || tmp == 17 || tmp == 18 || tmp == 19 || tmp == 21 || tmp == 26 || tmp == 27) return 29; if (0x02030213u >> (x & 31) & 1) { std::int32_t k = 32 - (CountlZero(x - 1) >> 1); std::uint64_t s = 1ull << k, t = (s + (x >> k)) >> 1; while (t < s) { s = t; t = (s + x / s) >> 1; } if (s * s == x) return 0; } std::uint64_t Z = 33; while (Z < x) { std::uint64_t a = Z, n = x; bool res = false; while (a != 0) { std::int32_t s = CountrZero(a); a >>= s; res ^= ((s & 1) && ((n & 0b111) == 3 || (n & 0b111) == 5)); res ^= ((a & 0b11) == 3 && (n & 0b11) == 3); std::uint64_t tmp = n; n = a; a = tmp % n; } if (n == 1 && res) break; Z += 4; } if (Z >= x) return 1; return Z; } LIBCPPRIME_CONSTEXPR bool IsPrime64MillerRabin(const std::uint64_t x) noexcept { MontgomeryModint64Impl<0> mint; mint.set(x); const std::int32_t S = CountrZero(x - 1); const std::uint64_t D = (x - 1) >> S; const auto one = mint.one(), mone = mint.neg(one); auto test2 = [=](std::uint64_t base1, std::uint64_t base2) -> bool { auto a = one, b = one; auto c = mint.build(base1), d = mint.build(base2); std::uint64_t ex = D; while (ex != 1) { auto e = mint.mul(c, c), f = mint.mul(d, d); if (ex & 1) a = mint.mul(a, c), b = mint.mul(b, d); c = e, d = f; ex >>= 1; } a = mint.mul(a, c), b = mint.mul(b, d); bool res1 = mint.same(a, one) || mint.same(a, mone); bool res2 = mint.same(b, one) || mint.same(b, mone); if (!(res1 && res2)) { for (std::int32_t i = 0; i != S - 1; ++i) { a = mint.mul(a, a), b = mint.mul(b, b); res1 |= mint.same(a, mone), res2 |= mint.same(b, mone); } if (!res1 || !res2) return false; } return true; }; auto test3 = [=](std::uint64_t base1, std::uint64_t base2, std::uint64_t base3) -> bool { auto a = one, b = one, c = one; auto d = mint.build(base1), e = mint.build(base2), f = mint.build(base3); std::uint64_t ex = D; while (ex != 1) { const auto g = mint.mul(d, d), h = mint.mul(e, e), i = mint.mul(f, f); if (ex & 1) a = mint.mul(a, d), b = mint.mul(b, e), c = mint.mul(c, f); d = g, e = h, f = i; ex >>= 1; } a = mint.mul(a, d), b = mint.mul(b, e), c = mint.mul(c, f); bool res1 = mint.same(a, one) || mint.same(a, mone); bool res2 = mint.same(b, one) || mint.same(b, mone); bool res3 = mint.same(c, one) || mint.same(c, mone); if (!(res1 && res2 && res3)) { for (std::int32_t i = 0; i != S - 1; ++i) { a = mint.mul(a, a), b = mint.mul(b, b), c = mint.mul(c, c); res1 |= mint.same(a, mone), res2 |= mint.same(b, mone), res3 |= mint.same(c, mone); } if (!res1 || !res2 || !res3) return false; } return true; }; auto test4 = [=](std::uint64_t base1, std::uint64_t base2, std::uint64_t base3, std::uint64_t base4) -> bool { auto a = one, b = one, c = one, d = one; auto e = mint.build(base1), f = mint.build(base2), g = mint.build(base3), h = mint.build(base4); std::uint64_t ex = D; while (ex != 1) { auto i = mint.mul(e, e), j = mint.mul(f, f), k = mint.mul(g, g), l = mint.mul(h, h); if (ex & 1) a = mint.mul(a, e), b = mint.mul(b, f), c = mint.mul(c, g), d = mint.mul(d, h); e = i, f = j, g = k, h = l; ex >>= 1; } a = mint.mul(a, e), b = mint.mul(b, f), c = mint.mul(c, g), d = mint.mul(d, h); bool res1 = mint.same(a, one) || mint.same(a, mone); bool res2 = mint.same(b, one) || mint.same(b, mone); bool res3 = mint.same(c, one) || mint.same(c, mone); bool res4 = mint.same(d, one) || mint.same(d, mone); if (!(res1 && res2 && res3 && res4)) { for (std::int32_t i = 0; i != S - 1; ++i) { a = mint.mul(a, a), b = mint.mul(b, b), c = mint.mul(c, c), d = mint.mul(d, d); res1 |= mint.same(a, mone), res2 |= mint.same(b, mone), res3 |= mint.same(c, mone), res4 |= mint.same(d, mone); } if (!res1 || !res2 || !res3 || !res4) return false; } return true; }; // These bases were discovered by Steve Worley and Jim Sinclair. if (x < 585226005592931977ull) { if (x < 7999252175582851ull) { if (x < 350269456337ull) return test3(4230279247111683200ull, 14694767155120705706ull, 16641139526367750375ull); else if (x < 55245642489451ull) return test2(2ull, 141889084524735ull) && test2(1199124725622454117ull, 11096072698276303650ull); else return test2(2ull, 4130806001517ull) && test3(149795463772692060ull, 186635894390467037ull, 3967304179347715805ull); } else return test3(2ull, 123635709730000ull, 9233062284813009ull) && test3(43835965440333360ull, 761179012939631437ull, 1263739024124850375ull); } else return test3(2ull, 325ull, 9375ull) && test4(28178ull, 450775ull, 9780504ull, 1795265022ull); } template<std::int32_t Strict> LIBCPPRIME_CONSTEXPR bool IsPrime64BailliePSW(const std::uint64_t x) noexcept { MontgomeryModint64Impl<Strict> mint; mint.set(x); const std::int32_t S = CountrZero(x - 1); const std::uint64_t D = (x - 1) >> S; const auto one = mint.one(), mone = mint.neg(one); auto miller_rabin_test = [&]() -> bool { auto a = one, b = mint.raw(2); std::uint64_t ex = D; while (ex != 1) { auto c = mint.mul(b, b); if (ex & 1) a = mint.mul(a, b); b = c; ex >>= 1; } a = mint.mul(a, b); bool flag = mint.same(a, one) || mint.same(a, mone); if (x % 4 == 3) return flag; if (flag) return true; for (std::int32_t i = 0; i != S - 1; ++i) { a = mint.mul(a, a); if (mint.same(a, mone)) return true; } return false; }; if (!miller_rabin_test()) return false; std::uint64_t Z = GetLucasBase(x); if (Z <= 1) return Z == 1; const std::uint64_t Q = mint.raw(x - (Z - 1) / 4); std::uint64_t u = one, v = one, Qn = Q; std::uint64_t k = (x + 1) << CountlZero(x + 1); Z = mint.raw(Z); std::uint64_t t = (x >> 1) + 1; for (k <<= 1; k; k <<= 1) { u = mint.mul(u, v); v = mint.sub(mint.mul(v, v), mint.add(Qn, Qn)); Qn = mint.mul(Qn, Qn); if (k >> 63) { std::uint64_t uu = mint.add(u, v); uu = (uu >> 1) + ((uu & 1) ? t : 0); v = mint.add(mint.mul(Z, u), v); v = (v >> 1) + ((v & 1) ? t : 0); u = uu; Qn = mint.mul(Qn, Q); } } if (mint.is_zero(u) || mint.is_zero(v)) return true; std::uint64_t f = (x + 1) & ~x; for (f >>= 1; f; f >>= 1) { u = mint.mul(u, v); v = mint.sub(mint.mul(v, v), mint.add(Qn, Qn)); if (mint.is_zero(v)) return true; Qn = mint.mul(Qn, Qn); } return false; } } // namespace internal LIBCPPRIME_CONSTEXPR bool IsPrimeNoTable(std::uint64_t n) noexcept { if (n < 1024) return internal::IsPrime10(n); else { if ((n & 1) == 0 || 6148914691236517205u >= 12297829382473034411u * n || 3689348814741910323u >= 14757395258967641293u * n || 2635249153387078802u >= 7905747460161236407u * n || 1676976733973595601u >= 3353953467947191203u * n || 1418980313362273201u >= 5675921253449092805u * n || 1085102592571150095u >= 17361641481138401521u * n) return false; if (n <= 0xffffffff) return internal::IsPrime32(n); else if (n < (std::uint64_t(1) << 62)) return internal::IsPrime64MillerRabin(n); else if (n < (std::uint64_t(1) << 63)) return internal::IsPrime64BailliePSW<1>(n); else return internal::IsPrime64BailliePSW<2>(n); } } } // namespace cppr #endif #include <iostream> int main() { std::cin.tie(0)->sync_with_stdio(0); int n; std::cin >> n; for(int i=0; i!=n; ++i) { unsigned long long m; std::cin >> m; std::cout << m << ' ' << cppr::IsPrimeNoTable(m) << '\n'; } }