結果
問題 | No.1170 Never Want to Walk |
ユーザー | いた |
提出日時 | 2024-12-30 21:28:00 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 6,582 bytes |
コンパイル時間 | 387 ms |
コンパイル使用メモリ | 82,176 KB |
実行使用メモリ | 70,784 KB |
最終ジャッジ日時 | 2024-12-30 21:28:07 |
合計ジャッジ時間 | 7,049 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
testcase_33 | RE | - |
testcase_34 | RE | - |
testcase_35 | RE | - |
testcase_36 | RE | - |
testcase_37 | RE | - |
testcase_38 | RE | - |
ソースコード
import bisect from collections import deque class SortedSet(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)" a = list(a) if not all(a[i] < a[i + 1] for i in range(len(a) - 1)): a = sorted(set(a)) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedSet" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def add(self, x: T) -> bool: "Add an element and return True if added. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return True a = self._find_bucket(x) i = bisect_left(a, x) if i != len(a) and a[i] == x: return False a.insert(i, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() return True def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans class UnionFind: def __init__(self, n): self._n = n self._parent = [-1] * n self._roots = set(range(n)) def _find(self, x): if self._parent[x] < 0: return x self._parent[x] = self._find(self._parent[x]) return self._parent[x] def union(self, x, y): x, y = self._find(x), self._find(y) if x == y: return if self._parent[y] < self._parent[x]: x, y = y, x self._parent[x] += self._parent[y] self._parent[y] = x self._roots.discard(y) def same(self, x, y): return self._find(x) == self._find(y) def size(self, x): return -self._parent[self._find(x)] def members(self, x): root = self._find(x) return [i for i in range(self._n) if self._find(i) == root] def all_group_members(self): group_members = dict() for member in range(self._n): root = self._find(member) if root not in group_members: group_members[root] = [] group_members[root].append(member) return group_members def root(self, x): return self._find(x) def roots(self): return self._roots def group_count(self): return len(self.roots()) def group_numbers(self): return [self._find(i) for i in range(self._n)] def __str__(self): return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items()) N,A,B=map(int,input().split()) x=list(map(int,input().split())) x.sort() ne=[-1]*N def root(N): if ne[N]<0: return N else: ne[N]=root(ne[N]) return ne[N] def merge(x,y): x,y=root(x),root(y) if x==y: return if ne[x]>ne[y]: x,y=y,x ne[x]+=ne[y] ne[y]=x def same(x,y): return root(x)==root(y) q=deque() stp=set() n={v:i for i,v in enumerate(x)} x=SortedSet(x) haiki=[] while x: now=x.pop(0) q.append(now) haiki=[] while q: now=q.popleft() a=x.bisect_right(now-A) b=x.bisect_left(now-B) c=x.bisect_left(now+A) d=x.bisect_right(now+B) for v in range(b,a): if same(n[now],n[x[v]]): continue haiki.append(x[v]) merge(n[now],n[x[v]]) q.append(x[v]) for v in range(c,d): if same(n[now],n[x[v]]): continue haiki.append(x[v]) merge(n[now],n[x[v]]) q.append(x[v]) while haiki: x.discard(haiki.pop()) for i in range(N): print(-ne[root(i)])