結果
| 問題 |
No.1661 Sum is Prime (Hard Version)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-01-08 00:03:25 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 41 ms / 3,000 ms |
| コード長 | 4,587 bytes |
| コンパイル時間 | 3,740 ms |
| コンパイル使用メモリ | 283,708 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2025-01-08 00:03:31 |
| 合計ジャッジ時間 | 5,276 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
# include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
const double pi = acos(-1);
template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T hinf() { return inf<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }
template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; }
template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; }
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); };
ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; };
ll MOD(ll x, ll m){return (x%m+m)%m; }
ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; }
template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>;
# define all(qpqpq) (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end())
# define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>)
# define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++)
# define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++)
# define len(x) ((ll)(x).size())
# define bit(n) (1LL << (n))
# define pb push_back
# define exists(c, e) ((c).find(e) != (c).end())
struct INIT{
INIT(){
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cout << fixed << setprecision(20);
}
}INIT;
namespace mmrz {
void solve();
}
int main(){
mmrz::solve();
}
#define debug(...) (static_cast<void>(0))
using namespace mmrz;
unsigned long long iroot(unsigned long long n, int k=2){
constexpr unsigned long long LIM = -1;
if(n <= 1 || k == 1){
return n;
}
if(k >= 64){
return 1;
}
if(k == 2){
return sqrtl(n);
}
if(n == LIM)n--;
auto safe_mul = [&](unsigned long long &x, unsigned long long &y) -> void {
if(x <= LIM / y){
x *= y;
}else{
x = LIM;
}
};
auto power = [&](unsigned long long a, int b) -> unsigned long long {
unsigned long long ret = 1;
while(b){
if(b & 1)safe_mul(ret, a);
safe_mul(a, a);
b >>= 1;
}
return ret;
};
unsigned long long ret = (k == 3 ? cbrt(n)-1 : pow(n, nextafter(1.0/double(k), 0.0)));
while(power(ret+1, k) <= n)ret++;
return ret;
}
//https://judge.yosupo.jp/submission/61551
//https://rsk0315.hatenablog.com/entry/2021/05/18/015511
ll counting_primes(const ll N) {
if (N <= 1) return 0;
if (N == 2) return 1;
const int v = iroot(N);
int s = (v + 1) / 2;
vector<int> smalls(s);
for (int i = 1; i < s; i++) smalls[i] = i;
vector<int> roughs(s);
for (int i = 0; i < s; i++) roughs[i] = 2 * i + 1;
vector<ll> larges(s);
for (int i = 0; i < s; i++) larges[i] = (N / (2 * i + 1) - 1) / 2;
vector<bool> skip(v + 1);
const auto divide = [](ll n, ll d) -> int { return (double)n / d;};
const auto half = [](int n) -> int { return (n - 1) >> 1;};
int pc = 0;
for (int p = 3; p <= v; p += 2) if (!skip[p]) {
int q = p * p;
if ((ll)q * q > N) break;
skip[p] = true;
for (int i = q; i <= v; i += 2 * p) skip[i] = true;
int ns = 0;
for (int k = 0; k < s; k++) {
int i = roughs[k];
if (skip[i]) continue;
ll d = (ll)i * p;
larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc;
roughs[ns++] = i;
}
s = ns;
for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
int c = smalls[j >> 1] - pc;
for (int e = (j * p) >> 1; i >= e; i--) smalls[i] -= c;
}
pc++;
}
larges[0] += (ll)(s + 2 * (pc - 1)) * (s - 1) / 2;
for (int k = 1; k < s; k++) larges[0] -= larges[k];
for (int l = 1; l < s; l++) {
ll q = roughs[l];
ll M = N / q;
int e = smalls[half(M / q)] - pc;
if (e < l + 1) break;
ll t = 0;
for (int k = l + 1; k <= e; k++)
t += smalls[half(divide(M, roughs[k]))];
larges[0] += t - (ll)(e - l) * (pc + l - 1);
}
return larges[0] + 1;
}
void SOLVE(){
ll l, r;
cin >> l >> r;
cout << counting_primes(r) - counting_primes(l-1) + counting_primes(2*r) - counting_primes(2*l) << endl;
}
void mmrz::solve(){
int t = 1;
//cin >> t;
while(t--)SOLVE();
}