結果
問題 |
No.1661 Sum is Prime (Hard Version)
|
ユーザー |
|
提出日時 | 2025-01-08 00:03:25 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 41 ms / 3,000 ms |
コード長 | 4,587 bytes |
コンパイル時間 | 3,740 ms |
コンパイル使用メモリ | 283,708 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2025-01-08 00:03:31 |
合計ジャッジ時間 | 5,276 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 22 |
ソースコード
# include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T hinf() { return inf<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); } template <typename T_char>T_char TU(T_char cX) { return toupper(cX); } template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast<void>(0)) using namespace mmrz; unsigned long long iroot(unsigned long long n, int k=2){ constexpr unsigned long long LIM = -1; if(n <= 1 || k == 1){ return n; } if(k >= 64){ return 1; } if(k == 2){ return sqrtl(n); } if(n == LIM)n--; auto safe_mul = [&](unsigned long long &x, unsigned long long &y) -> void { if(x <= LIM / y){ x *= y; }else{ x = LIM; } }; auto power = [&](unsigned long long a, int b) -> unsigned long long { unsigned long long ret = 1; while(b){ if(b & 1)safe_mul(ret, a); safe_mul(a, a); b >>= 1; } return ret; }; unsigned long long ret = (k == 3 ? cbrt(n)-1 : pow(n, nextafter(1.0/double(k), 0.0))); while(power(ret+1, k) <= n)ret++; return ret; } //https://judge.yosupo.jp/submission/61551 //https://rsk0315.hatenablog.com/entry/2021/05/18/015511 ll counting_primes(const ll N) { if (N <= 1) return 0; if (N == 2) return 1; const int v = iroot(N); int s = (v + 1) / 2; vector<int> smalls(s); for (int i = 1; i < s; i++) smalls[i] = i; vector<int> roughs(s); for (int i = 0; i < s; i++) roughs[i] = 2 * i + 1; vector<ll> larges(s); for (int i = 0; i < s; i++) larges[i] = (N / (2 * i + 1) - 1) / 2; vector<bool> skip(v + 1); const auto divide = [](ll n, ll d) -> int { return (double)n / d;}; const auto half = [](int n) -> int { return (n - 1) >> 1;}; int pc = 0; for (int p = 3; p <= v; p += 2) if (!skip[p]) { int q = p * p; if ((ll)q * q > N) break; skip[p] = true; for (int i = q; i <= v; i += 2 * p) skip[i] = true; int ns = 0; for (int k = 0; k < s; k++) { int i = roughs[k]; if (skip[i]) continue; ll d = (ll)i * p; larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc; roughs[ns++] = i; } s = ns; for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) { int c = smalls[j >> 1] - pc; for (int e = (j * p) >> 1; i >= e; i--) smalls[i] -= c; } pc++; } larges[0] += (ll)(s + 2 * (pc - 1)) * (s - 1) / 2; for (int k = 1; k < s; k++) larges[0] -= larges[k]; for (int l = 1; l < s; l++) { ll q = roughs[l]; ll M = N / q; int e = smalls[half(M / q)] - pc; if (e < l + 1) break; ll t = 0; for (int k = l + 1; k <= e; k++) t += smalls[half(divide(M, roughs[k]))]; larges[0] += t - (ll)(e - l) * (pc + l - 1); } return larges[0] + 1; } void SOLVE(){ ll l, r; cin >> l >> r; cout << counting_primes(r) - counting_primes(l-1) + counting_primes(2*r) - counting_primes(2*l) << endl; } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }