結果
問題 |
No.2786 RMQ on Grid Path
|
ユーザー |
![]() |
提出日時 | 2025-01-10 20:55:33 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 440 ms / 6,000 ms |
コード長 | 26,898 bytes |
コンパイル時間 | 12,027 ms |
コンパイル使用メモリ | 324,320 KB |
実行使用メモリ | 26,864 KB |
最終ジャッジ日時 | 2025-01-10 20:56:08 |
合計ジャッジ時間 | 20,181 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 35 |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(std::vector<T> &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" #line 2 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #include <ranges> #line 9 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" #line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp" namespace noya2::internal { template<class E> struct csr { csr () {} csr (int _n) : n(_n) {} csr (int _n, int m) : n(_n){ start.reserve(m); elist.reserve(m); } // ACL style constructor (do not have to call build) csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) { for (auto &[i, e] : idx_elem){ start[i + 2]++; } for (int i = 1; i < n; i++){ start[i + 2] += start[i + 1]; } for (auto &[i, e] : idx_elem){ elist[start[i + 1]++] = e; } prepared = true; } int add(int idx, E elem){ int eid = start.size(); start.emplace_back(idx); elist.emplace_back(elem); return eid; } void build(){ if (prepared) return ; int m = start.size(); std::vector<E> nelist(m); std::vector<int> nstart(n + 2, 0); for (int i = 0; i < m; i++){ nstart[start[i] + 2]++; } for (int i = 1; i < n; i++){ nstart[i + 2] += nstart[i + 1]; } for (int i = 0; i < m; i++){ nelist[nstart[start[i] + 1]++] = elist[i]; } swap(elist,nelist); swap(start,nstart); prepared = true; } const auto operator[](int idx) const { return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } auto operator[](int idx){ return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]); } const auto operator()(int idx, int l, int r) const { return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } auto operator()(int idx, int l, int r){ return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r); } size_t size() const { return n; } int n; std::vector<int> start; std::vector<E> elist; bool prepared = false; }; } // namespace noya2::internal #line 11 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp" namespace noya2 { struct hld_tree { int n, root; std::vector<int> down, nxt, sub, tour; noya2::internal::csr<int> childs; // default constructor (nop) hld_tree () {} // tree with _n node // after construct, call input_edges / input_parents / add_edge _n - 1 times hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { if (n == 1){ nxt[0] = -1; down[0] = -1; build_from_parents(); } } // par[i] < i, par[0] == -1 hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){ build_from_parents(); } // par[i] < i, par[0] == -1 hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) { nxt.swap(par); build_from_parents(); } // distinct unweighted undirected n - 1 edges of tree hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) { for (auto &[u, v] : es){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } // input parents from cin template<int indexed = 1> void input_parents(){ // using std::cin; nxt[0] = -1; for (int u = 1; u < n; u++){ cin >> nxt[u]; nxt[u] -= indexed; } build_from_parents(); } // input n - 1 edges from cin template<int indexed = 1> void input_edges(){ // using std::cin; for (int i = 1; i < n; i++){ int u, v; cin >> u >> v; u -= indexed; v -= indexed; down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; } build_from_edges(); } void add_edge(int u, int v){ down[u]++; down[v]++; nxt[u] ^= v; nxt[v] ^= u; // use tour[0] as counter if (++tour[0] == n - 1){ build_from_edges(); } } size_t size() const { return n; } // top vertex of heavy path which contains v int leader(int v) const { return nxt[v] < 0 ? v : nxt[v]; } // level ancestor // ret is ancestor of v, dist(ret, v) == d // if d > depth(v), return -1 int la(int v, int d) const { while (v != -1){ int u = leader(v); if (down[v] - d >= down[u]){ v = tour[down[v] - d]; break; } d -= down[v] - down[u] + 1; v = (u == root ? -1 : ~nxt[u]); } return v; } // lowest common ancestor of u and v int lca(int u, int v) const { int du = down[u], dv = down[v]; if (du > dv){ std::swap(du, dv); std::swap(u, v); } if (dv < du + sub[u]){ return u; } while (du < dv){ v = ~nxt[leader(v)]; dv = down[v]; } return v; } // distance from u to v int dist(int u, int v) const { int _dist = 0; while (leader(u) != leader(v)){ if (down[u] > down[v]) std::swap(u, v); _dist += down[v] - down[leader(v)] + 1; v = ~nxt[leader(v)]; } _dist += std::abs(down[u] - down[v]); return _dist; } // d times move from to its neighbor (direction of to) // if d > dist(from, to), return -1 int jump(int from, int to, int d) const { int _from = from, _to = to; int dist_from_lca = 0, dist_to_lca = 0; while (leader(_from) != leader(_to)){ if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[leader(_from)] + 1; _from = ~nxt[leader(_from)]; } else { dist_to_lca += down[_to] - down[leader(_to)] + 1; _to = ~nxt[leader(_to)]; } } if (down[_from] > down[_to]){ dist_from_lca += down[_from] - down[_to]; } else { dist_to_lca += down[_to] - down[_from]; } if (d <= dist_from_lca){ return la(from, d); } d -= dist_from_lca; if (d <= dist_to_lca){ return la(to, dist_to_lca - d); } return -1; } // parent of v (if v is root, return -1) int parent(int v) const { if (v == root) return -1; return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]); } // visiting time in euler tour // usage : seg.set(index(v), X[v]) int index(int vertex) const { return down[vertex]; } // usage : seg.set(index_edge(e.u, e.v), e.val) int index(int vertex1, int vertex2) const { return std::max(down[vertex1], down[vertex2]); } // subtree size of v int subtree_size(int v) const { return sub[v]; } // prod in subtree v : seg.prod(subtree_l(v), subtree_r(v)) int subtree_l(int v) const { return down[v]; } int subtree_r(int v) const { return down[v] + sub[v]; } // v is in subtree r bool is_in_subtree(int r, int v) const { return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r); } // distance table from s std::vector<int> dist_table(int s) const { std::vector<int> table(n, -1); table[s] = 0; while (s != root){ table[parent(s)] = table[s] + 1; s = parent(s); } for (int v : tour){ if (table[v] == -1){ table[v] = table[parent(v)] + 1; } } return table; } // dist, v1, v2 std::tuple<int, int, int> diameter() const { std::vector<int> dep = dist_table(root); int v1 = std::ranges::max_element(dep) - dep.begin(); std::vector<int> fromv1 = dist_table(v1); int v2 = std::ranges::max_element(fromv1) - fromv1.begin(); return {fromv1[v2], v1, v2}; } // vertex array {from, ..., to} std::vector<int> path(int from, int to) const { int d = dist(from, to); std::vector<int> _path(d + 1); int front = 0, back = d; while (from != to){ if (down[from] > down[to]){ _path[front++] = from; from = parent(from); } else { _path[back--] = to; to = parent(to); } } _path[front] = from; return _path; } // path decomposition and query (vertex weighted) // if l < r, decsending order tour[l, r) // if l > r, acsending order tour(l, r] template<bool vertex = true> void path_query(int u, int v, auto f) const { while (leader(u) != leader(v)){ if (down[u] < down[v]){ f(down[leader(v)], down[v] + 1); v = ~nxt[leader(v)]; } else { f(down[u] + 1, down[leader(u)]); u = ~nxt[leader(u)]; } } if constexpr (vertex){ if (down[u] < down[v]){ f(down[u], down[v] + 1); } else { f(down[u] + 1, down[v]); } } else { if (down[u] != down[v]){ f(down[u] + 1, down[v] + 1); } } } // {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree. // parent[i] < i, parent[0] == -1 std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const { if (vs.empty()){ return {{},{}}; } auto comp = [&](int l, int r){ return down[l] < down[r]; }; std::ranges::sort(vs, comp); int sz = vs.size(); vs.reserve(2*sz); for (int i = 0; i < sz-1; i++){ vs.emplace_back(lca(vs[i], vs[i+1])); } std::sort(vs.begin() + sz, vs.end(), comp); std::ranges::inplace_merge(vs, vs.begin() + sz, comp); auto del = std::ranges::unique(vs); vs.erase(del.begin(), del.end()); sz = vs.size(); std::stack<int> st; std::vector<int> par(sz); par[0] = -1; st.push(0); for (int i = 1; i < sz; i++){ while (!is_in_subtree(vs[st.top()], vs[i])) st.pop(); par[i] = st.top(); st.push(i); } return {par, vs}; } //* CSR // build csr for using operator() void build_csr(){ childs = noya2::internal::csr<int>(n, n - 1); for (int v = 0; v < n; v++){ if (v == root) continue; if (leader(v) != v){ childs.add(parent(v),v); } } for (int v = 0; v < n; v++){ if (v == root) continue; if (leader(v) == v){ childs.add(parent(v),v); } } childs.build(); } const auto operator()(int v) const { return childs[v]; } auto operator()(int v){ return childs[v]; } //*/ // hld_tree g; // euler tour order : `for (int v : g)` // with range_adaptor : `for (int v : g | std::views::reverse)` // bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }` auto begin() const { return tour.begin(); } auto end() const { return tour.end(); } private: // nxt[v] : parent of v, nxt[0] == -1 void build_from_parents(){ for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; sub[v] += sub[u]; down[v] = std::max(down[v], sub[u]); } for (int u = n - 1; u >= 1; u--){ int v = nxt[u]; if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } sub[0] = ~down[0] + 1; down[0] = 0; for (int u = 1; u < n; u++){ int v = nxt[u]; int nsub = ~down[u] + 1; if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } for (int u = 0; u < n; u++){ tour[down[u]] = u; } } // down[v] : degree of v // nxt[v] : xor prod of neighbor of v void build_from_edges(){ // use tour as queue int back = 0; for (int u = 0; u < n; u++){ if (u != root && down[u] == 1){ tour[back++] = u; } } for (int front = 0; front < n - 1; front++){ int u = tour[front]; down[u] = -1; int v = nxt[u]; // parent of v nxt[v] ^= u; if (--down[v] == 1 && v != root){ tour[back++] = v; } } // check : now, tour is reverse of topological order tour.pop_back(); // check : now, down[*] <= 1 for (int u : tour){ int v = nxt[u]; // subtree size (initialized (1,1,...,1)) sub[v] += sub[u]; // heaviest subtree of its child down[v] = std::max(down[v], sub[u]); } for (int u : tour){ int v = nxt[u]; // whether u is not the top of heavy path if (down[v] == sub[u]){ sub[u] = ~sub[u]; down[v] = ~down[v]; } } // after appearing v as u (or v == root), // down[v] is the visiting time of euler tour // nxt[v] is the lowest vertex of heavy path which contains v // (if v itself, nxt[v] is ~(parent of v)) // sub[v] + down[v] is the light child's starting time of euler tour // note : heavy child's visiting time of euler tour is (the time of its parent) + 1 sub[root] = ~down[root] + 1; down[root] = 0; nxt[root] = -1; for (int u : tour | std::views::reverse){ int v = nxt[u]; int nsub = ~down[u] + 1; // heavy child if (sub[u] < 0){ down[u] = down[v] + 1; nxt[u] = (nxt[v] < 0 ? v : nxt[v]); } // light child else { down[u] = down[v] + sub[v]; sub[v] += sub[u]; nxt[u] = ~v; } sub[u] = nsub; } // tour is inverse permutation of down tour.push_back(0); for (int u = 0; u < n; u++){ tour[down[u]] = u; } } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/dsu.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/data_structure/dsu.hpp" namespace noya2{ struct dsu { public: dsu() : _n(0) {} dsu(int n) : _n(n), parent_or_size(n, -1) {} int merge(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); int x = leader(a), y = leader(b); if (x == y) return x; if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y); parent_or_size[x] += parent_or_size[y]; parent_or_size[y] = x; return x; } bool same(int a, int b) { assert(0 <= a && a < _n); assert(0 <= b && b < _n); return leader(a) == leader(b); } int leader(int a) { assert(0 <= a && a < _n); if (parent_or_size[a] < 0) return a; return parent_or_size[a] = leader(parent_or_size[a]); } int size(int a) { assert(0 <= a && a < _n); return -parent_or_size[leader(a)]; } std::vector<std::vector<int>> groups() { std::vector<int> leader_buf(_n), group_size(_n); for (int i = 0; i < _n; i++) { leader_buf[i] = leader(i); group_size[leader_buf[i]]++; } std::vector<std::vector<int>> result(_n); for (int i = 0; i < _n; i++) { result[i].reserve(group_size[i]); } for (int i = 0; i < _n; i++) { result[leader_buf[i]].push_back(i); } result.erase( std::remove_if(result.begin(), result.end(), [&](const std::vector<int>& v) { return v.empty(); }), result.end()); return result; } private: int _n; // root node: -1 * component size // otherwise: parent std::vector<int> parent_or_size; }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/graph/grid.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/graph/grid.hpp" namespace noya2 { struct grid { int h, w; grid (int _h = 0, int _w = 0) : h(_h), w(_w) {} int idx(int x, int y) const { return x * w + y; } std::pair<int,int> pos(int id) const { return {id / w, id % w}; } bool operator()(int x, int y) const { return 0 <= x && x < h && 0 <= y && y < w; } bool operator()(int id) const { return operator()(id / w, id % w); } static constexpr std::array<std::pair<int,int>, 4> dxys = {std::pair<int,int>{0, 1}, {-1, 0}, {0, -1}, {1, 0}}; auto adj4(int x, int y) const { return dxys | std::views::transform([x, y](std::pair<int,int> dxy){ return std::pair<int,int>(dxy.first + x, dxy.second + y); }) | std::views::filter([this](std::pair<int,int> xy){ return operator()(xy.first, xy.second); }); } auto adj4(int id) const { return adj4(id / w, id % w) | std::ranges::views::transform([this](std::pair<int,int> xy){ return idx(xy.first, xy.second); }); } }; } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/segment_tree.hpp" namespace noya2{ template <class S, S (*op)(S, S), S (*e)()> struct segtree { public: segtree() : segtree(0) {} segtree(int n) : segtree(std::vector<S>(n, e())) {} segtree(const std::vector<S>& v) : _n(int(v.size())) { log = 0; size = 1; while (size < _n) size <<= 1, log++; d = std::vector<S>(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() { return d[1]; } template <bool (*f)(S)> int max_right(int l) { return max_right(l, [](S x) { return f(x); }); } template <class F> int max_right(int l, F f) { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*f)(S)> int min_left(int r) { return min_left(r, [](S x) { return f(x); }); } template <class F> int min_left(int r, F f) { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; } // namespace noya2 #line 7 "c.cpp" int op(int a, int b){ return max(a,b); } int e(){ return 0; } void solve(){ int h, w; in(h,w); grid g(h,w); dsu d(h*w); vector<vector<int>> a(h,vector<int>(w)); in(a); hld_tree tr(h*w); vector<tuple<int,int,int>> es; rep(i,h) rep(j,w){ for (auto [x, y] : g.adj4(i,j)){ int u = g.idx(i,j); int v = g.idx(x,y); es.push_back({max(a[i][j],a[x][y]),u,v}); } } sort(all(es)); { vector<tuple<int,int,int>> nes; for (auto [c, u, v] : es){ if (d.same(u,v)) continue; tr.add_edge(u,v); nes.push_back({c,u,v}); d.merge(u,v); } swap(es,nes); } segtree<int,op,e> seg(h*w); for (auto [c, u, v] : es){ seg.set(tr.index(u,v),c); } int q; in(q); while (q--){ int sx, sy, gx, gy; in(sx,sy,gx,gy); sx--, sy--, gx--, gy--; int ans = 0; tr.path_query<false>(g.idx(sx,sy),g.idx(gx,gy),[&](int l, int r){ if (l > r) swap(l,r); chmax(ans,seg.prod(l,r)); }); out(ans); } } int main(){ int t = 1; //in(t); while (t--) { solve(); } }