結果
問題 |
No.1520 Zigzag Sum
|
ユーザー |
|
提出日時 | 2025-01-12 20:09:12 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,113 bytes |
コンパイル時間 | 6,994 ms |
コンパイル使用メモリ | 332,620 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2025-01-12 20:09:24 |
合計ジャッジ時間 | 8,174 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | WA * 1 |
other | AC * 1 WA * 6 |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> using namespace std; namespace my{ using ml=atcoder::modint998244353; auto&operator>>(istream&i,ml&x){int t;i>>t;x=t;return i;} auto&operator<<(ostream&o,const ml&x){return o<<(int)x.val();} #define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__) #define FO(n) for(ll ij=n;ij-->0;) #define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step) #define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__)) #define of(i,...) for(auto[i,i##stop,i##step]=range(1,__VA_ARGS__);i>=i##stop;i+=i##step) #define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a) #define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{ void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);} using ll=long long; constexpr auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;if(s)r[2]*=-1;return r;} constexpr char newline=10; constexpr char space=32; ll powm1(ll n){return 1-2*(n&1);} template<class T>ll size(const T&a)requires requires(T t){t.size();}{return static_cast<ll>(a.size());} template<class...A>ostream&operator<<(ostream&o,const tuple<A...>&t){apply([&](const auto&...a){ll i=sizeof...(a);(((o<<a<<string(--i>0,space))),...);},t);return o;} template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>; template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;} template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?newline:space);return o;} template<class V>struct vec:vector<V>{ using vector<V>::vector; vec(const vector<V>&v){vector<V>::operator=(v);} template<class...A>requires(sizeof...(A)>=3)vec(A...a){const ll n=sizeof...(a)-1;ll s[n];ll i=0;((i<n?s[i++]=a:0),...);*this=make_vec(s,get<n>(tuple{a...}));} template<class T,ll n,ll i=0>static auto make_vec(const ll(&s)[n],T x){if constexpr(i==n-1)return vec<T>(s[i],x);else{auto X=make_vec<T,n,i+1>(s,x);return vec<decltype(X)>(s[i],X);}} vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;} vec operator^(const vec&u)const{return vec{*this}^=u;} vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;} vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;} vec operator+(const vec&u)const{return vec{*this}+=u;} vec operator-(const vec&u)const{return vec{*this}-=u;} vec&operator++(){fe(*this,e)++e;return*this;} vec&operator--(){fe(*this,e)--e;return*this;} vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;} ll size()const{return vector<V>::size();} }; template<ll rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;}; template<class T>struct tensor_helper<0,T>{using type=T;}; template<ll rank,class T>using tensor=typename tensor_helper<rank,T>::type; template<class...A>requires(sizeof...(A)>=2)vec(A...a)->vec<tensor<sizeof...(a)-2,remove_reference_t<decltype(get<sizeof...(a)-1>(declval<tuple<A...>>()))>>>; vec(ll)->vec<ll>; void lin(auto&...a){(cin>>...>>a);} template<char c=space>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<newline;} template<class T>concept modulary=requires(T t){t.mod();}; template<class T>struct factorial{ ll M; vec<T>fa,fa_inv; factorial(ll M):M(M),fa(M+1){ fa[0]=1; fo(i,1,M+1)fa[i]=fa[i-1]*i; if constexpr(!modulary<T>)return; fa_inv.resize(M+1); fa_inv.back()=fa.back().inv(); of(i,M)fa_inv[i]=fa_inv[i+1]*(i+1); } T operator()(ll n)const{assert(n<=M);return fa[n];} T inv(ll n)const{assert(n<=M);return fa_inv[n];} }; template<class T>struct combination{ ll M; factorial<T>fa; combination(ll M):M(M),fa(M){} T operator()(ll n,ll k){return c(n,k);} T c(ll n,ll k)const{return n<0?powm1(k)*c(-n+k-1,k):k<0||n<k?0:fa(n)*fa.inv(k)*fa.inv(n-k);} }; single_testcase void solve(){ combination<ml>comb(400000); LL(T); fo(T){ LL(H,W); pp(H==1||W==1?0:comb(H+W-4,H-2)*(H+W-3)*2); } }}