結果
問題 |
No.160 最短経路のうち辞書順最小
|
ユーザー |
|
提出日時 | 2025-01-14 20:11:44 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 12 ms / 5,000 ms |
コード長 | 18,694 bytes |
コンパイル時間 | 3,291 ms |
コンパイル使用メモリ | 188,556 KB |
実行使用メモリ | 5,736 KB |
最終ジャッジ日時 | 2025-01-14 20:11:49 |
合計ジャッジ時間 | 4,244 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 26 |
コンパイルメッセージ
main.cpp: In member function ‘void shortest_path::rdijkstra<T>::run()’: main.cpp:139:22: warning: structured bindings only available with ‘-std=c++17’ or ‘-std=gnu++17’ [-Wc++17-extensions] 139 | auto [d, v] = que.top(); | ^ main.cpp: In static member function ‘static std::vector<std::vector<std::pair<int, T> > > shortest_path::pered(graph<T>&, int)’: main.cpp:362:18: warning: structured bindings only available with ‘-std=c++17’ or ‘-std=gnu++17’ [-Wc++17-extensions] 362 | auto [d, v, s] = que.top(); | ^ main.cpp: In static member function ‘static std::vector<_Tp> shortest_path::dijkstra(graph<T>&, int)’: main.cpp:594:18: warning: structured bindings only available with ‘-std=c++17’ or ‘-std=gnu++17’ [-Wc++17-extensions] 594 | auto [d, v] = que.top(); | ^ main.cpp: In lambda function: main.cpp:628:18: warning: structured bindings only available with ‘-std=c++17’ or ‘-std=gnu++17’ [-Wc++17-extensions] 628 | for(auto [nxt, cost] : nxt){ | ^
ソースコード
#include<bits/stdc++.h> using namespace std; using ll = long long; #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60LL; const int IINF = (1 << 30) - 2; template<typename T> struct edge{ int from; int to; T cost; int id; edge(){} edge(int to, T cost=1) : from(-1), to(to), cost(cost){} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} edge(int from, int to, T cost, int id) : from(from), to(to), cost(cost), id(id){} void reverse(){swap(from, to);} }; template<typename T> struct edges : std::vector<edge<T>>{ void sort(){ std::sort( (*this).begin(), (*this).end(), [](const edge<T>& a, const edge<T>& b){ return a.cost < b.cost; } ); } }; template<typename T = bool> struct graph : std::vector<edges<T>>{ private: int n = 0; int m = 0; edges<T> es; bool dir; public: graph(int n, bool dir) : n(n), dir(dir){ (*this).resize(n); } void add_edge(int from, int to, T cost=1){ if(dir){ es.push_back(edge<T>(from, to, cost, m)); (*this)[from].push_back(edge<T>(from, to, cost, m++)); }else{ if(from > to) swap(from, to); es.push_back(edge<T>(from, to, cost, m)); (*this)[from].push_back(edge<T>(from, to, cost, m)); (*this)[to].push_back(edge<T>(to, from, cost, m++)); } } int get_vnum(){ return n; } int get_enum(){ return m; } bool get_dir(){ return dir; } edge<T> get_edge(int i){ return es[i]; } edges<T> get_edge_set(){ return es; } }; template<typename T> struct redge{ int from, to; T cap, cost; int rev; redge(int to, T cap, T cost=(T)(1)) : from(-1), to(to), cap(cap), cost(cost){} redge(int to, T cap, T cost, int rev) : from(-1), to(to), cap(cap), cost(cost), rev(rev){} }; template<typename T> using Edges = vector<edge<T>>; template<typename T> using weighted_graph = vector<Edges<T>>; template<typename T> using tree = vector<Edges<T>>; using unweighted_graph = vector<vector<int>>; template<typename T> using residual_graph = vector<vector<redge<T>>>; class shortest_path{ private: // restoreable dijkstra template<typename T> struct rdijkstra{ private: const T TINF = numeric_limits<T>::max()/3; int n, s; graph<T> G; vector<T> dist; vector<int> vpar; edges<T> epar; public: rdijkstra(graph<T> G, int s) : G(G), s(s){ // initilization n = G.get_vnum(); dist.resize(n, TINF); vpar.resize(n, -1); epar.resize(n, -1); // running Dijkstra algorithm run(); } void run(){ dist[s] = 0; priority_queue<pair<T, int>, vector<pair<T, int>>, greater<>> que; que.push({0, s}); while(!que.empty()){ auto [d, v] = que.top(); que.pop(); if(dist[v] < d) continue; for(auto e : G[v]){ if(dist[v] + e.cost < dist[e.to]){ dist[e.to] = dist[v] + e.cost; vpar[e.to] = v; epar[e.to] = e; que.push({dist[e.to], e.to}); } } } } T get_dist(int t){ return dist[t]; } vector<T> get_dist(){ return dist; } vector<int> get_vpar(){ return vpar; } int get_vpar(int v){ return vpar[v]; } edges<T> get_epar(){ return epar; } edge<T> get_epar(int v){ return epar[v]; } vector<int> get_vpath(int t){ vector<int> vpath; int cur = t; while(cur != -1){ vpath.push_back(cur); cur = vpar[cur]; } reverse(vpath.begin(), vpath.end()); return vpath; } edges<T> get_epath(int t){ edges<T> epath; int cur = t; while(cur != s){ epath.push_back(epar[cur]); cur = vpar[cur]; } reverse(epath.begin(), epath.end()); return epath; } graph<T> get_shotest_path_tree(){ graph<T> spt(n, false); for(int v=0; v<n; v++) if(v != s){ int p = vpar[v]; auto e = G.get_edge(epar[v]); spt[vpar[v]].add_edge(vpar[v], v, e.cost); } return spt; } }; public: template<typename T> static vector<T> bfs(graph<T> &G, int s){ int n = G.get_vnum(); vector<T> dist(n, -1); dist[s] = 0; queue<int> que; que.push(s); while(!que.empty()){ int v = que.front(); que.pop(); for(auto e : G[v]) if(dist[e.to]==-1){ dist[e.to] = dist[v] + 1; que.push(e.to); } } return dist; } template<typename T> static vector<T> binary_bfs(graph<T> &G, int s){ int n = G.get_vnum(); vector<T> dist(n, -1); dist[s] = 0; deque<int> deq; deq.push_front(s); while(!deq.empty()){ int v = deq.front(); deq.pop_front(); for(auto e : G[v]) if(dist[e.to]==-1){ dist[e.to] = dist[v] + e.cost; if(e.cost) deq.push_back(e.to); else deq.push_front(e.to); } } return dist; } template<typename T> static vector<T> constant_bfs(graph<T> &G, int s, T W){ int n = G.get_vnum(); vector<T> dist(n, -1); vector<vector<int>> cand(n*W+1); dist[s] = 0; cand[0].push_back(s); for(int d=0; d<=n*W; d++) for(int v : cand[d]){ if(dist[v]!=-1) continue; for(auto e : G[v]) if(dist[v] + dist[e.to] < dist[e.ot]){ dist[e.to] = dist[v] + e.cost; cand[dist[e.to]].push_back(e.to); } } return dist; } template<typename T> static vector<T> complement_bfs(graph<T> &G, int s){ int n = G.get_vnum(); map<pair<int, int>, bool> mp; for(int v=0; v<n; v++) for(auto e : G[v]) mp[{v, e.to}] = true; vector<T> dist(n, -1); vector<int> unvisited; for(int v=0; v<n; v++) if(v != s) unvisited.push_back(v); queue<int> visited; visited.push(s); dist[s] = 0; while(!visited.empty()){ int v = visited.front(); visited.pop(); vector<int> nxt; for(int to : unvisited){ if(!mp[{v, to}]){ visited.push(to); dist[to] = dist[v]+1; }else{ nxt.pb(to); } } unvisited = nxt; } return dist; } template<typename T> static vector<T> bellman_ford(graph<T> &G, int s){ int n = G.get_vnum(); bool dir = G.get_dir(); const T TINF = numeric_limits<T>::max()/3; edges<T> es = G.get_edge_set(); vector<T> dist(n, TINF); vector<bool> flag(n, false); dist[s] = 0; for(int i=0; i<n; i++) for(auto e : es){ if(dist[e.from]!=TINF && dist[e.from]+e.cost<dist[e.to]) dist[e.to] = dist[e.from] + e.cost; if(!dir && dist[e.to]!=TINF && dist[e.to]+e.cost<dist[e.from]) dist[e.from] = dist[e.to] + e.cost; } for(int i=0; i<n; i++) for(auto e : es){ if(dist[e.from]!=TINF && dist[e.from]+e.cost<dist[e.to]) dist[e.to] = dist[e.from] + e.cost, flag[e.to]=true; if(!dir && dist[e.to]!=TINF && dist[e.to]+e.cost<dist[e.from]) dist[e.from] = dist[e.to] + e.cost, flag[e.from]=true; } for(int i=0; i<n; i++) for(auto e : es){ flag[e.to] = flag[e.to] | flag[e.from]; if(!dir) flag[e.from] = flag[e.from] | flag[e.to]; } for(int v=0; v<n; v++) if(flag[v]) dist[v] = -TINF; return dist; } template<typename T> static vector<vector<T>> warshall_floyd(graph<T> &G){ int n = G.get_vnum(); const T TINF = numeric_limits<T>::max()/3; vector<vector<T>> dist(n, vector<T>(n, TINF)); for(int v=0; v<n; v++) dist[v][v] = 0; for(int v=0; v<n; v++) for(auto e : G[v]) dist[v][e.to] = min(dist[v][e.to], e.cost); for(int k=0; k<n; k++) for(int i=0; i<n; i++) for(int j=0; j<n; j++) if(dist[i][k] < TINF && dist[k][j] < TINF) dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); return dist; } template<typename T> static vector<vector<pair<int, T>>> pered(graph<T> &G, int k){ int n = G.get_vnum(); const T TINF = numeric_limits<T>::max()/3; priority_queue<tuple<T, int, int>, vector<tuple<T, int, int>>, greater<>> que; vector<vector<pair<int, T>>> neibors(n); vector<unordered_map<int, T>> mp(n); for(int v=0; v<n; v++){ que.push({0, v, v}); mp[v][v] = 0; } while(!que.empty()){ auto [d, v, s] = que.top(); que.pop(); if((int)neibors[v].size()==k) continue; if(mp[v].find(s)!=mp[v].end()) if(mp[v][s] < d) continue; neibors[v].push_back({s, d}); for(auto e : G[v]){ if((int)neibors[e.to].size()==k) continue; if(mp[e.to].find(s)==mp[e.to].end()) mp[e.to][s] = TINF; if(d + e.cost < mp[e.to][s]){ mp[e.to][s] = d + e.cost; que.push({d+e.cost, e.to, s}); } } } return neibors; } template<typename T> static vector<T> malick_mittal_gupta(graph<T> &G, int s, int t){ // declear variable const T TINF = numeric_limits<T>::max()/3; rdijkstra<T> dijk_s(G, s), dijk_t(G, t); int n = G.get_vnum(); int m = G.get_enum(); vector<T> dist_s = dijk_s.get_dist(); vector<T> dist_t = dijk_t.get_dist(); vector<int> path = dijk_s.get_vpath(t); int p = (int)path.size(); path.push_back(n); vector<vector<int>> ch(n); for(int v=0; v<n; v++) if(dijk_s.get_vpar(v) != -1) ch[dijk_s.get_vpar(v)].push_back(v); vector<int> label(n, -1); function<void(int, int)> labeling = [&](int v, int l){ label[v] = l; for(int to : ch[v]) labeling(to, l); }; for(int i=0; i<p; i++){ label[path[i]] = i; for(int to : ch[path[i]]) if(to != path[i+1]){ labeling(to, i); } } vector<bool> used(m, false); for(int i=1; i<p; i++) used[dijk_s.get_epar(path[i]).id] = true; vector<vector<int>> sevt(p), eevt(p); for(int v=0; v<n; v++) for(auto e : G[v]) if(!used[e.id] && label[v] < label[e.to]){ sevt[label[v]].push_back(e.id); eevt[label[e.to]].push_back(e.id); } vector<T> ans(m, dijk_s.get_dist(t)); set<pair<T, int>> eset; for(int i=1; i<p; i++){ auto v = path[i]; auto f = dijk_s.get_epar(v); ans[f.id] = TINF; // start event with label = i-1 for(int id : sevt[i-1]){ auto e = G.get_edge(id); int x = e.from, y = e.to; if(label[x] > label[y]) swap(x, y); eset.insert({dist_s[x]+e.cost+dist_t[y], id}); } // calc ans if(!eset.empty()) ans[f.id] = min(ans[f.id], (*eset.begin()).first); // end event with label = i for(int id : eevt[i]){ auto e = G.get_edge(id); int x = e.from, y = e.to; if(label[x] > label[y]) swap(x, y); eset.erase({dist_s[x]+e.cost+dist_t[y], id}); } } return ans; } template<typename T> static vector<T> roditty_zwick(graph<T> &G, int s, int t){ int n = G.get_vnum(); int m = G.get_enum(); const T TINF = numeric_limits<T>::max()/2; int log_n = 0, sqrt_n = 0; int sn = n; while(sn) sn/=2, log_n++; while(sqrt_n*sqrt_n<n) sqrt_n++; vector<int> vpar(n, -1), epar(n, -1), sdist(n, IINF); auto bfs1 = [&](int s){ queue<int> que; que.push(s); sdist[s] = 0; while(!que.empty()){ int v = que.front(); que.pop(); for(auto e : G[v]) if(sdist[e.to]==IINF){ sdist[e.to] = sdist[v] + 1; vpar[e.to] = v; epar[e.to] = e.id; que.push(e.to); } } }; bfs1(s); vector<int> vpath, epath; vector<int> ans(m, sdist[n-1]); if(sdist[n-1]==IINF) return ans; int now = t; while(now != -1){ vpath.push_back(now); if(now != 0){ epath.push_back(epar[now]); ans[epar[now]] = IINF; } now = vpar[now]; } reverse(vpath.begin(), vpath.end()); reverse(epath.begin(), epath.end()); int p = (int)vpath.size(); graph<int> H(n, true), RH(n, true); for(int v=0; v<n; v++) for(auto e : G[v]) if(ans[e.id] != IINF){ H.add_edge(v, e.to); RH.add_edge(e.to, v); } // find all short detour of length < sqrt_n for(int i=0; i<sqrt_n; i++){ vector<int> dist(n, -1); vector<vector<int>> vec(2*n); for(int j=i; j<p; j+=sqrt_n){ dist[vpath[j]] = sqrt_n*(j/sqrt_n) + i; assert(dist[vpath[j]]<n); vec[dist[vpath[j]]].push_back(vpath[j]); } for(int j=0; j<2*n; j++){ for(auto v : vec[j]) for(auto e : H[v]) if(dist[e.to]==-1){ dist[e.to] = dist[v] + 1; vec[dist[e.to]].push_back(e.to); } } for(int j=i+1; j<p; j++) if(j%sqrt_n!=i){ int lo = sqrt_n*((j-i)/sqrt_n) + i; int hi = lo + sqrt_n; int r = lo; if(dist[vpath[j]]==-1) continue; if(lo <= dist[vpath[j]] && dist[vpath[j]] < hi){ for(int k=r; k<j; k++){ ans[epath[k]] = min(ans[epath[k]], dist[vpath[j]]+(p-1-j)); } } } } auto bfs2 = [&](graph<int> &g, int r, vector<int> &dist){ queue<int> que; que.push(r); dist[r] = 0; while(!que.empty()){ int v = que.front(); que.pop(); for(auto e : g[v]) if(dist[e.to]==-1){ dist[e.to] = dist[v] + 1; que.push(e.to); } } }; // find long detours (randomized) vector<bool> check_path_vertex(n, false); for(int i=0; i<p; i++) check_path_vertex[vpath[i]] = true; vector<int> rest; for(int v=0; v<n; v++) if(!check_path_vertex[v]) rest.push_back(v); for(int loop=0; loop<sqrt_n*log_n; loop++){ if((int)rest.size()==0) break; int idx = rng()%(int)rest.size(); int r = rest[idx]; rest.erase(rest.begin()+idx); vector<int> dist(n, -1), rdist(n, -1); bfs2(H, r, dist); bfs2(RH, r, rdist); vector<int> rmin(p+1, IINF); for(int i=p-1; i>=0; i--){ rmin[i] = rmin[i+1]; if(dist[vpath[i]]!=-1){ rmin[i] = min(rmin[i+1], dist[vpath[i]]+(p-1-i)); } } int mn = IINF; for(int i=0; i<p-1; i++){ if(rdist[i]!=-1){ mn = min(mn, i + rdist[vpath[i]]); } ans[epath[i]] = min(ans[epath[i]], mn + rmin[i+1]); } } return ans; } template<typename T> static vector<T> yen(graph<T> &G, int s, int t, int k){ } template<typename T> static vector<T> dijkstra(graph<T> &G, int s){ int n = G.get_vnum(); const T TINF = numeric_limits<T>::max()/3; vector<T> dist(n, TINF); dist[s] = 0; priority_queue<pair<T, int>, vector<pair<T, int>>, greater<>> que; que.push({0, s}); while(!que.empty()){ auto [d, v] = que.top(); que.pop(); if(dist[v] < d) continue; for(auto e : G[v]){ if(dist[v] + e.cost < dist[e.to]){ dist[e.to] = dist[v] + e.cost; que.push({dist[e.to], e.to}); } } } return dist; } }; void solve(){ int n, m, s, t; cin >> n >> m >> s >> t; graph<ll> G(n, false); for(int i=0; i<m; i++){ int u, v; cin >> u >> v; ll w; cin >> w; G.add_edge(u, v, w); } auto dist = shortest_path::dijkstra<ll>(G, s); vector<int> par(n, -1); vector<bool> visited(n, false); function<void(int)> dfs = [&](int v){ visited[v] = true; vector<pair<int, ll>> nxt; for(auto e : G[v]) nxt.pb({e.to, e.cost}); sort(all(nxt)); for(auto [nxt, cost] : nxt){ if(dist[nxt] == dist[v] + cost){ if(!visited[nxt]){ par[nxt] = v; dfs(nxt); } } } }; dfs(s); vector<int> ans; while(t != -1){ ans.pb(t); t = par[t]; } reverse(all(ans)); for(int v : ans) cout << v << ' '; cout << '\n'; } int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); int T=1; //cin >> T; while(T--) solve(); }