結果

問題 No.3004 ヤング図形
ユーザー ArcAki
提出日時 2025-01-18 09:48:01
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 550 ms / 4,000 ms
コード長 2,192 bytes
コンパイル時間 22,869 ms
コンパイル使用メモリ 375,188 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2025-01-18 09:48:36
合計ジャッジ時間 25,688 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::{
collections::*,
cmp::*,
mem::swap,
time::Instant,
io::{self, stdin, Read, read_to_string},
hash::Hash,
};
#[allow(unused_imports)]
use proconio::{input, input_interactive, marker::{*}};
#[allow(unused_imports)]
//use rand::{thread_rng, Rng, seq::SliceRandom};
#[allow(unused_imports)]
//use ac_library::{*};
#[allow(dead_code)]
const INF: i64 = 1<<60;
#[allow(dead_code)]
const MOD: i64 = 998244353;
#[allow(dead_code)]
const D: [(usize, usize); 4] = [(1, 0), (0, 1), (!0, 0), (0, !0)];
pub fn floor(a:i64, b:i64)->i64{let res=(a%b+b)%b;(a-res)/b}
pub fn extended_gcd(a:i64,b:i64)->(i64,i64,i64)
{if b==0{(a,1,0)}else{let(g,x,y)=extended_gcd(b,a%b);(g,y,x-floor(a,b)*y)}}
pub fn mod_inverse(a:i64,m:i64)->i64{let(_,x,_) =extended_gcd(a,m);(x%m+m)%m}
pub fn comb(a: i64, b: i64, f: &Vec<(i64, i64)>)->i64{
if a<b{return 0;}if b==0 || a==b{ return 1; }
else{let x=f[a as usize].0;
let y=f[(a-b) as usize].1;let z=f[b as usize].1;return((x*y)%MOD)*z%MOD;}}
pub fn factorial(x: i64)->Vec<(i64, i64)>{
let mut f=vec![(1i64,1i64),(1, 1)];let mut z = 1i64;
let mut inv = vec![0; x as usize+10];inv[1] = 1;
for i in 2..x+1{z=(z*i)%MOD;
let w=(MOD-inv[(MOD%i)as usize]*(MOD/i)%MOD)%MOD;
inv[i as usize] = w;
f.push((z, (f[i as usize-1].1*w)%MOD));}return f;}
pub fn fast_mod_pow(x: i64,p: usize, m: i64)->i64{
let mut res=1;let mut t=x;let mut z=p;while z > 0{
if z%2==1{res = (res*t)%m;}t = (t*t)%m;z /= 2; }res}
//use proconio::fastout;
//#[fastout]
fn main(){
input!{
k: usize,
query: [(i64, i64); k],
}
let mut ac = 0;
let mut need = Vec::with_capacity(2*k);
for &(u, v) in &query{
ac += u*v;
need.push((u, v));
need.push((v, 1));
}
need.sort();
let mut z = 1;
let mut idx = 1;
let mut ans = 1;
for &(x, k) in &need{
while idx <= x{
z = (z*idx)%MOD;
idx += 1;
}
ans = (ans*mod_inverse(fast_mod_pow(z, k as usize, MOD), MOD))%MOD;
}
for i in idx..=ac{
z = (z*i)%MOD;
}
ans = (ans*z)%MOD;
println!("{}", ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0