結果

問題 No.2036 Max Middle
ユーザー eQeeQe
提出日時 2025-01-24 18:54:24
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 58 ms / 2,000 ms
コード長 6,371 bytes
コンパイル時間 7,328 ms
コンパイル使用メモリ 333,324 KB
実行使用メモリ 10,300 KB
最終ジャッジ日時 2025-01-24 18:54:34
合計ジャッジ時間 9,724 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 17
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include<atcoder/all>
using namespace std;
namespace my{
#define eb emplace_back
#define LL(...) ll __VA_ARGS__;lin(__VA_ARGS__)
#define VL(n,...) vec<ll>__VA_ARGS__;setsize({n},__VA_ARGS__);lin(__VA_ARGS__)
#define FO(n) for(ll ij=n;ij-->0;)
#define FOR(i,...) for(auto[i,i##stop,i##step]=range(0,__VA_ARGS__);i<i##stop;i+=i##step)
#define fo(i,...) FO##__VA_OPT__(R)(i __VA_OPT__(,__VA_ARGS__))
#define of(i,...) for(auto[i,i##stop,i##step]=range(1,__VA_ARGS__);i>=i##stop;i+=i##step)
#define fe(a,i,...) for(auto&&__VA_OPT__([)i __VA_OPT__(,__VA_ARGS__]):a)
#define single_testcase void solve();}int main(){my::io();my::solve();}namespace my{
void io(){cin.tie(nullptr)->sync_with_stdio(0);cout<<fixed<<setprecision(15);}
using ll=long long;
constexpr auto range(bool s,auto...a){array<ll,3>r{0,0,1};ll I=0;((r[I++]=a),...);if(!s&&I==1)swap(r[0],r[1]);r[0]-=s;if(s)r[2]*=-1;return r;}
constexpr char newline=10;
constexpr char space=32;

template<class A,class B>struct pair{
  A a;B b;
  pair()=default;
  pair(A a,B b):a(a),b(b){}
  pair(const std::pair<A,B>&p):a(p.first),b(p.second){}
  auto operator<=>(const pair&)const=default;
  pair operator+(const pair&p)const{return{a+p.a,b+p.b};}
  friend istream&operator>>(istream&i,pair&p){return i>>p.a>>p.b;}
  friend ostream&operator<<(ostream&o,const pair&p){return o<<p.a<<space<<p.b;}
};

template<class F=less<>>auto&sort(auto&a,F f={}){ranges::sort(a,f);return a;}
auto&unique(auto&a){sort(a).erase(ranges::unique(a).begin(),a.end());return a;}

template<class T,class U>ostream&operator<<(ostream&o,const std::pair<T,U>&p){return o<<p.first<<space<<p.second;}

template<ll k>auto pack_kth(const auto&...a){return get<k>(make_tuple(a...));}
template<class T,size_t...I>auto pack_slice_impl(index_sequence<I...>, const auto&...a){return array<T,sizeof...(I)>{get<I>(forward_as_tuple(a...))...};}
template<class T,size_t n>auto pack_slice(const auto&...a){return pack_slice_impl<T>(make_index_sequence<n>{},a...);}

template<class V>concept vectorial=is_base_of_v<vector<typename V::value_type>,V>;
template<class T>struct vec_attr{using core_type=T;static constexpr int rank=0;};
template<vectorial V>struct vec_attr<V>{using core_type=typename vec_attr<typename V::value_type>::core_type;static constexpr int rank=vec_attr<typename V::value_type>::rank+1;};
template<class T>using core_t=vec_attr<T>::core_type;
template<class V>istream&operator>>(istream&i,vector<V>&v){fe(v,e)i>>e;return i;}
template<class V>ostream&operator<<(ostream&o,const vector<V>&v){fe(v,e)o<<e<<string(&e!=&v.back(),vectorial<V>?newline:space);return o;}

template<class V>struct vec:vector<V>{
  using vector<V>::vector;
  vec(const vector<V>&v){vector<V>::operator=(v);}

  template<class...A>requires(sizeof...(A)>=3)vec(A...a){const ll n=sizeof...(a)-1;auto t=pack_slice<ll,n>(a...);ll s[n];fo(i,n)s[i]=t[i];*this=make_vec(s,pack_kth<n>(a...));}
  template<class T,ll n,ll i=0>static auto make_vec(const ll(&s)[n],T x){if constexpr(i==n-1)return vec<T>(s[i],x);else{auto X=make_vec<T,n,i+1>(s,x);return vec<decltype(X)>(s[i],X);}}

  vec&operator^=(const vec&u){this->insert(this->end(),u.begin(),u.end());return*this;}
  vec operator^(const vec&u)const{return vec{*this}^=u;}
  vec&operator+=(const vec&u){vec&v=*this;fo(i,v.size())v[i]+=u[i];return v;}
  vec&operator-=(const vec&u){vec&v=*this;fo(i,v.size())v[i]-=u[i];return v;}
  vec operator+(const vec&u)const{return vec{*this}+=u;}
  vec operator-(const vec&u)const{return vec{*this}-=u;}
  vec&operator++(){fe(*this,e)++e;return*this;}
  vec&operator--(){fe(*this,e)--e;return*this;}
  vec operator-()const{vec v=*this;fe(v,e)e=-e;return v;}

  ll size()const{return vector<V>::size();}

  auto pop_back(){auto r=this->back();vector<V>::pop_back();return r;}

  auto lower_bound(const V&x)const{return std::lower_bound(this->begin(),this->end(),x);}
  ll arg_lower_bound(const V&x)const{return lower_bound(x)-this->begin();}

  auto scan(const auto&f)const{pair<core_t<V>,bool>r{};fe(*this,e)if constexpr(!vectorial<V>)r.b?f(r.a,e),r:r={e,1};else if(auto s=e.scan(f);s.b)r.b?f(r.a,s.a),r:r=s;return r;}
  auto sum()const{return scan([](auto&a,const auto&b){a+=b;}).a;}
  vec zeta()const{vec v=*this;if constexpr(vectorial<V>)fe(v,e)e=e.zeta();fo(i,v.size()-1)v[i+1]+=v[i];return v;}

  template<class F=less<>>auto sort(F f={})const{vec v=*this;ranges::sort(v,f);return v;}
};
template<ll rank,class T>struct tensor_helper{using type=vec<typename tensor_helper<rank-1,T>::type>;};
template<class T>struct tensor_helper<0,T>{using type=T;};
template<ll rank,class T>using tensor=typename tensor_helper<rank,T>::type;
template<class...A>requires(sizeof...(A)>=2)vec(A...a)->vec<tensor<sizeof...(a)-2,remove_reference_t<decltype(get<sizeof...(a)-1>(declval<tuple<A...>>()))>>>;
vec(ll)->vec<ll>;

template<ll n,class...A>void setsize(const ll(&l)[n],A&...a){((a=vec<void*>::make_vec(l,core_t<A>{})),...);}

void lin(auto&...a){(cin>>...>>a);}
template<char c=space>void pp(const auto&...a){ll n=sizeof...(a);((cout<<a<<string(--n>0,c)),...);cout<<newline;}

template<class T=ll>auto iota(auto...a){array<ll,2>v{};ll I=0;((v[I++]=a),...);if(I==1)swap(v[0],v[1]);vec<T>r;fo(i,v[0],v[1])r.eb(i);return r;}
auto zip(auto&...a){auto v=(a^...);unique(v);([&](auto&u){fe(u,e)e=v.arg_lower_bound(e);}(a),...);return v;}

void sort(auto&...a){vec<common_type_t<decltype(a)...>>v;(v.eb(a),...);sort(v);ll I=0;((a=v[I++]),...);}

template<class F=less<>>auto sort_index(const auto&a,F f={}){return iota(a.size()).sort([&](ll i,ll j){return!f(a[i],a[j])&&!f(a[j],a[i])?i<j:f(a[i],a[j]);});}

template<class T>auto left_greater_count_enumerate(const vec<T>&a){
  auto o=sort_index(a);
  ll n=a.size();
  vec<ll>r(n);
  atcoder::fenwick_tree<int>s(n);
  of(i,n){
    r[o[i]]=s.sum(0,o[i]);
    s.add(o[i],1);
  }
  return r;
}

template<class T>auto inversion_enumerate(const vec<T>&a){return left_greater_count_enumerate(a).zeta();}
template<class T>ll inversion(const vec<T>&a){return a.empty()?0:inversion_enumerate(a).back();}

template<class T>ll inversion(vec<T>a,vec<T>b){
  assert(csort(a)==csort(b));
  ll n=a.size();
  vec<vec<ll>>g(zip(a,b).size());
  of(i,n)g[b[i]].eb(i);
  fo(i,n)a[i]=g[a[i]].pop_back();
  return inversion(a);
}

single_testcase
void solve(){
  LL(N);
  VL(N,a);

  vec b(N-1);
  fo(i,N-1)b[i]=(a[i]<a[i+1]);
  pp(inversion(b));
}}
0