結果

問題 No.3017 交互浴
ユーザー yupiteru_kun
提出日時 2025-01-25 13:12:09
言語 C#
(.NET 8.0.404)
結果
AC  
実行時間 1,777 ms / 2,000 ms
コード長 23,288 bytes
コンパイル時間 15,124 ms
コンパイル使用メモリ 170,624 KB
実行使用メモリ 213,044 KB
最終ジャッジ日時 2025-01-25 22:38:59
合計ジャッジ時間 85,900 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 55
権限があれば一括ダウンロードができます
コンパイルメッセージ
  復元対象のプロジェクトを決定しています...
  /home/judge/data/code/main.csproj を復元しました (86 ミリ秒)。
  main -> /home/judge/data/code/bin/Release/net8.0/main.dll
  main -> /home/judge/data/code/bin/Release/net8.0/publish/

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using static System.Math;
using System.Text;
using System.Threading;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using Library;

namespace Program
{
    public static class ProblemE
    {
        static bool SAIKI = false;
        static public int numberOfRandomCases = 0;
        static public void MakeTestCase(List<string> _input, List<string> _output, ref Func<string[], bool> _outputChecker)
        {
        }
        static public void Solve()
        {
            var N = NN;
            var HList = NNList(N);
            var seg = new LIB_DynamicLazySegTree<long, long>(0, -1, (x, y) => x + y, (x, y, l, r) => y * (r - l), (x, y) => y);
            var ki = true;
            foreach (var item in HList)
            {
                if (ki) seg.Update(0, item, 1);
                else seg.Update(0, item, 0);
                Console.WriteLine(seg.Query(0, 10000000001));
                ki = !ki;
            }
        }
        class Printer : StreamWriter
        {
            public override IFormatProvider FormatProvider { get { return CultureInfo.InvariantCulture; } }
            public Printer(Stream stream) : base(stream, new UTF8Encoding(false, true)) { base.AutoFlush = false; }
            public Printer(Stream stream, Encoding encoding) : base(stream, encoding) { base.AutoFlush = false; }
        }
        static LIB_FastIO fastio = new LIB_FastIODebug();
        static string[] args;
        static public void Main(string[] args_t) { args = args_t; if (args_t.Length == 0) { fastio = new LIB_FastIO(); Console.SetOut(new Printer(Console.OpenStandardOutput())); } if (SAIKI) { var t = new Thread(Solve, 134217728); t.Start(); t.Join(); } else Solve(); Console.Out.Flush(); }
        static long NN => fastio.Long();
        static double ND => fastio.Double();
        static string NS => fastio.Scan();
        static long[] NNList(long N) => Repeat(0, N).Select(_ => NN).ToArray();
        static double[] NDList(long N) => Repeat(0, N).Select(_ => ND).ToArray();
        static string[] NSList(long N) => Repeat(0, N).Select(_ => NS).ToArray();
        static long Count<T>(this IEnumerable<T> x, Func<T, bool> pred) => Enumerable.Count(x, pred);
        static IEnumerable<T> Repeat<T>(T v, long n) => Enumerable.Repeat<T>(v, (int)n);
        static IEnumerable<int> Range(long s, long c) => Enumerable.Range((int)s, (int)c);
        static IOrderedEnumerable<T> OrderByRand<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x, _ => xorshift);
        static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x.OrderByRand(), e => e);
        static IOrderedEnumerable<T1> OrderBy<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderBy(x.OrderByRand(), selector);
        static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x) => Enumerable.OrderByDescending(x.OrderByRand(), e => e);
        static IOrderedEnumerable<T1> OrderByDescending<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderByDescending(x.OrderByRand(), selector);
        static IOrderedEnumerable<string> OrderBy(this IEnumerable<string> x) => x.OrderByRand().OrderBy(e => e, StringComparer.OrdinalIgnoreCase);
        static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderBy(selector, StringComparer.OrdinalIgnoreCase);
        static IOrderedEnumerable<string> OrderByDescending(this IEnumerable<string> x) => x.OrderByRand().OrderByDescending(e => e, StringComparer.OrdinalIgnoreCase);
        static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderByDescending(selector, StringComparer.OrdinalIgnoreCase);
        static string Join<T>(this IEnumerable<T> x, string separator = "") => string.Join(separator, x);
        static uint xorshift { get { _xsi.MoveNext(); return _xsi.Current; } }
        static IEnumerator<uint> _xsi = _xsc();
        static IEnumerator<uint> _xsc() { uint x = 123456789, y = 362436069, z = 521288629, w = (uint)(DateTime.Now.Ticks & 0xffffffff); while (true) { var t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); yield return w; } }
        static bool Chmax<T>(this ref T lhs, T rhs) where T : struct, IComparable<T> { if (lhs.CompareTo(rhs) < 0) { lhs = rhs; return true; } return false; }
        static bool Chmin<T>(this ref T lhs, T rhs) where T : struct, IComparable<T> { if (lhs.CompareTo(rhs) > 0) { lhs = rhs; return true; } return false; }
        static void Fill<T>(this T[] array, T value) => array.AsSpan().Fill(value);
        static void Fill<T>(this T[,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0], array.Length).Fill(value);
        static void Fill<T>(this T[,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0], array.Length).Fill(value);
        static void Fill<T>(this T[,,,] array, T value) => MemoryMarshal.CreateSpan(ref array[0, 0, 0, 0], array.Length).Fill(value);
    }
}
namespace Library {
    class LIB_DynamicLazySegTree<T, E> where E : IEquatable<E>
    {
        class Node
        {
            public Node left;
            public Node right;
            public E val;
            public T dat;
            public E lazy;
            public long nodeL;
            public long subtreeL;
            public long nodeR;
            public long subtreeR;
            public bool isBlack;
            public bool needRecalc;
        }
        Func<T, T, T> f;
        Func<T, E, long, long, T> g;
        Func<E, E, E> h;
        T ti;
        E ei;
        Node root;
        bool isNeedFix;
        Node lmax;
        Node[] pool;
        int poolLength;
        public long MaxKey
        {
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            get;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private set;
        }
        public long MinKey
        {
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            get;
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private set;
        }
        public LIB_DynamicLazySegTree(T ti, E ei, Func<T, T, T> f, Func<T, E, long, long, T> g, Func<E, E, E> h)
        {
            MinKey = long.MaxValue;
            MaxKey = long.MinValue;
            this.ti = ti;
            this.ei = ei;
            this.f = f;
            this.g = g;
            this.h = h;
            pool = new Node[32];
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        bool IsRed(Node n) => n != null && !n.isBlack;
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        bool IsBlack(Node n) => n != null && n.isBlack;
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        void Eval(Node n)
        {
            if (n == null || ei.Equals(n.lazy)) return;
            n.val = h(n.val, n.lazy);
            if (!n.needRecalc) n.dat = g(n.dat, n.lazy, n.subtreeL, n.subtreeR);
            if (n.left != null) n.left.lazy = h(n.left.lazy, n.lazy);
            if (n.right != null) n.right.lazy = h(n.right.lazy, n.lazy);
            n.lazy = ei;
        }
        void Recalc(Node n)
        {
            Eval(n);
            if (!n.needRecalc) return;
            n.needRecalc = false;
            n.dat = g(ti, n.val, n.nodeL, n.nodeR);
            if (n.left != null)
            {
                Recalc(n.left);
                n.dat = f(n.left.dat, n.dat);
            }
            if (n.right != null)
            {
                Recalc(n.right);
                n.dat = f(n.dat, n.right.dat);
            }
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        Node RotateL(Node n)
        {
            if (n != null) { Eval(n); Eval(n.right); }
            Node m = n.right, t = m.left;
            m.left = n; n.right = t;
            n.subtreeR = t?.subtreeR ?? n.nodeR;
            m.subtreeL = n.subtreeL;
            n.needRecalc = true; m.needRecalc = true;
            return m;
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        Node RotateR(Node n)
        {
            if (n != null) { Eval(n); Eval(n.left); }
            Node m = n.left, t = m.right;
            m.right = n; n.left = t;
            n.subtreeL = t?.subtreeL ?? n.nodeL;
            m.subtreeR = n.subtreeR;
            n.needRecalc = true; m.needRecalc = true;
            return m;
        }
        Node RotateLR(Node n)
        {
            n.left = RotateL(n.left);
            return RotateR(n);
        }
        Node RotateRL(Node n)
        {
            n.right = RotateR(n.right);
            return RotateL(n);
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        void Add(long l, long r, E val)
        {
            root = Add(root, l, r, val);
            root.isBlack = true;
        }
        Node Add(Node n, long l, long r, E val)
        {
            if (n == null)
            {
                isNeedFix = true;
                Node ret;
                if (poolLength == 0) ret = new Node() { nodeL = l, subtreeL = l, nodeR = r, subtreeR = r, val = val, dat = g(ti, val, l, r), lazy = ei };
                else
                {
                    ret = pool[--poolLength];
                    ret.nodeL = l;
                    ret.subtreeL = l;
                    ret.nodeR = r;
                    ret.subtreeR = r;
                    ret.val = val;
                    ret.dat = g(ti, val, l, r);
                    ret.lazy = ei;
                    ret.isBlack = false;
                    ret.needRecalc = false;
                    ret.left = ret.right = null;
                }
                return ret;
            }
            Eval(n);
            if (l < n.nodeL) n.left = Add(n.left, l, r, val);
            else n.right = Add(n.right, l, r, val);
            n.subtreeR = n.right?.subtreeR ?? n.nodeR;
            n.subtreeL = n.left?.subtreeL ?? n.nodeL;
            n.needRecalc = true;
            return Balance(n);
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        Node Balance(Node n)
        {
            if (!isNeedFix || !IsBlack(n)) return n;
            if (IsRed(n.left) && IsRed(n.left.left))
            {
                n = RotateR(n);
                n.left.isBlack = true;
            }
            else if (IsRed(n.left) && IsRed(n.left.right))
            {
                n = RotateLR(n);
                n.left.isBlack = true;
            }
            else if (IsRed(n.right) && IsRed(n.right.left))
            {
                n = RotateRL(n);
                n.right.isBlack = true;
            }
            else if (IsRed(n.right) && IsRed(n.right.right))
            {
                n = RotateL(n);
                n.right.isBlack = true;
            }
            else isNeedFix = false;
            return n;
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        void Remove(long l)
        {
            root = Remove(root, l);
            if (root != null) root.isBlack = true;
        }
        Node Remove(Node n, long l)
        {
            Eval(n);
            if (l < n.nodeL)
            {
                n.left = Remove(n.left, l);
                n.needRecalc = true;
                return BalanceL(n);
            }
            if (l > n.nodeL)
            {
                n.right = Remove(n.right, l);
                n.needRecalc = true;
                return BalanceR(n);
            }
            if (n.left == null)
            {
                isNeedFix = n.isBlack;
                return n.right;
            }
            n.left = RemoveMax(n.left);
            n.nodeL = lmax.nodeL;
            n.nodeR = lmax.nodeR;
            n.val = lmax.val;
            n.lazy = ei;
            n.needRecalc = true;
            pool[poolLength++] = lmax;
            if (pool.Length == poolLength)
            {
                var tmp = new Node[pool.Length << 1];
                for (var i = 0; i < pool.Length; ++i) tmp[i] = pool[i];
                pool = tmp;
            }
            return BalanceL(n);
        }
        Node RemoveMax(Node n)
        {
            Eval(n);
            if (n.right != null)
            {
                n.right = RemoveMax(n.right);
                n.subtreeR = n.right?.subtreeR ?? n.nodeR;
                n.needRecalc = true;
                return BalanceR(n);
            }
            lmax = n;
            isNeedFix = n.isBlack;
            return n.left;
        }
        Node BalanceL(Node n)
        {
            if (!isNeedFix) return n;
            if (IsBlack(n.right) && IsRed(n.right.left))
            {
                var b = n.isBlack;
                n = RotateRL(n);
                n.isBlack = b;
                n.left.isBlack = true;
                isNeedFix = false;
            }
            else if (IsBlack(n.right) && IsRed(n.right.right))
            {
                var b = n.isBlack;
                n = RotateL(n);
                n.isBlack = b;
                n.right.isBlack = true;
                n.left.isBlack = true;
                isNeedFix = false;
            }
            else if (IsBlack(n.right))
            {
                isNeedFix = n.isBlack;
                n.isBlack = true;
                n.right.isBlack = false;
            }
            else
            {
                n = RotateL(n);
                n.isBlack = true;
                n.left.isBlack = false;
                n.left = BalanceL(n.left);
                isNeedFix = false;
            }
            return n;
        }
        Node BalanceR(Node n)
        {
            if (!isNeedFix) return n;
            if (IsBlack(n.left) && IsRed(n.left.right))
            {
                var b = n.isBlack;
                n = RotateLR(n);
                n.isBlack = b; n.right.isBlack = true;
                isNeedFix = false;
            }
            else if (IsBlack(n.left) && IsRed(n.left.left))
            {
                var b = n.isBlack;
                n = RotateR(n);
                n.isBlack = b;
                n.left.isBlack = true;
                n.right.isBlack = true;
                isNeedFix = false;
            }
            else if (IsBlack(n.left))
            {
                isNeedFix = n.isBlack;
                n.isBlack = true;
                n.left.isBlack = false;
            }
            else
            {
                n = RotateR(n);
                n.isBlack = true;
                n.right.isBlack = false;
                n.right = BalanceR(n.right);
                isNeedFix = false;
            }
            return n;
        }
        List<long> removeList;
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void ForceUpdate(long l, long r, E val)
        {
            if (r <= l) return;
            removeList = new List<long>();
            cnt = 0;
            GetRemoveKeyList(root, l, r);
            if (cnt > 0) Add(l1, r1, val1);
            foreach (var key in removeList) Remove(key);
            Add(l, r, val);
        }
        void GetRemoveKeyList(Node n, long l, long r)
        {
            if (r <= l) return;
            while (n != null)
            {
                Eval(n);
                n.needRecalc = true;
                if (r <= n.nodeL) n = n.left;
                else if (n.nodeR <= l) n = n.right;
                else break;
            }
            if (n == null) return;
            if (l < n.nodeL) GetRemoveKeyList(n.left, l, n.nodeL);
            if (n.nodeR < r) GetRemoveKeyList(n.right, n.nodeR, r);
            l = Max(l, n.nodeL);
            r = Min(r, n.nodeR);
            if (n.nodeL == l && r == n.nodeR)
            {
                removeList.Add(n.nodeL);
            }
            else if (n.nodeL < l && r == n.nodeR)
            {
                n.nodeR = l;
            }
            else if (n.nodeL == l && r < n.nodeR)
            {
                cnt = 1;
                l1 = r; r1 = n.nodeR; val1 = n.val;
                removeList.Add(n.nodeL);
            }
            else if (n.nodeL < l && r < n.nodeR)
            {
                cnt = 1;
                l1 = r; r1 = n.nodeR; val1 = n.val;
                n.nodeR = l;
            }
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void Update(long l, long r, E val)
        {
            if (r <= l) return;
            if (l < MinKey) MinKey = l;
            if (MaxKey < r) MaxKey = r;
            if (root == null) Add(l, r, val);
            else if (r < root.subtreeL)
            {
                Add(r, root.subtreeL, ei);
                Add(l, r, val);
            }
            else if (r == root.subtreeL)
            {
                Add(l, r, val);
            }
            else if (root.subtreeR == l)
            {
                Add(l, r, val);
            }
            else if (root.subtreeR < l)
            {
                Add(root.subtreeR, l, ei);
                Add(l, r, val);
            }
            else
            {
                cnt = 0;
                Update(root, l, r, val);
                if (cnt > 0) Add(l1, r1, val1);
                if (cnt > 1) Add(l2, r2, val2);
            }
        }
        long l1; long r1; E val1;
        long l2; long r2; E val2;
        long cnt;
        void Update(Node n, long l, long r, E val)
        {
            if (r <= l) return;
            while (n != null)
            {
                Eval(n);
                n.needRecalc = true;
                if (r <= n.nodeL) n = n.left;
                else if (n.nodeR <= l) n = n.right;
                else break;
            }
            if (n == null)
            {
                if (++cnt == 1)
                {
                    l1 = l; r1 = r; val1 = val;
                }
                else
                {
                    l2 = l; r2 = r; val2 = val;
                }
                return;
            }
            if (l == n.subtreeL && r == n.subtreeR) n.lazy = val;
            else
            {
                if (l < n.nodeL) Update(n.left, l, n.nodeL, val);
                if (n.nodeR < r) Update(n.right, n.nodeR, r, val);
                l = Max(l, n.nodeL);
                r = Min(r, n.nodeR);
                if (n.nodeL == l && r == n.nodeR)
                {
                    n.val = h(n.val, val);
                }
                else if (n.nodeL < l && r == n.nodeR)
                {
                    if (++cnt == 1)
                    {
                        l1 = l; r1 = r; val1 = h(n.val, val);
                    }
                    else
                    {
                        l2 = l; r2 = r; val2 = h(n.val, val);
                    }
                    n.nodeR = l;
                }
                else if (n.nodeL == l && r < n.nodeR)
                {
                    if (++cnt == 1)
                    {
                        l1 = r; r1 = n.nodeR; val1 = n.val;
                    }
                    else
                    {
                        l2 = r; r2 = n.nodeR; val2 = n.val;
                    }
                    n.val = h(n.val, val);
                    n.nodeR = r;
                }
                else if (n.nodeL < l && r < n.nodeR)
                {
                    l1 = r; r1 = n.nodeR; val1 = n.val;
                    l2 = l; r2 = r; val2 = h(n.val, val);
                    cnt = 2;
                    n.nodeR = l;
                }
            }
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public T Query(long l, long r)
        {
            if (root == null) return ti;
            return Query(root, l, r);
        }
        T Query(Node n, long l, long r)
        {
            if (r <= l) return ti;
            while (n != null)
            {
                Recalc(n);
                if (r <= n.nodeL) n = n.left;
                else if (n.nodeR <= l) n = n.right;
                else break;
            }
            if (n == null) return ti;
            if (l == n.subtreeL && r == n.subtreeR)
            {
                return n.dat;
            }
            else
            {
                var v1 = l >= n.nodeL ? ti : Query(n.left, l, n.nodeL);
                var v3 = n.nodeR >= r ? ti : Query(n.right, n.nodeR, r);
                l = Max(l, n.nodeL);
                r = Min(r, n.nodeR);
                var v2 = g(ti, n.val, l, r);
                return f(f(v1, v2), v3);
            }
        }
    }
    class LIB_FastIO
    {
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public LIB_FastIO() { str = Console.OpenStandardInput(); }
        readonly Stream str;
        readonly byte[] buf = new byte[2048];
        int len, ptr;
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        byte read()
        {
            if (ptr >= len)
            {
                ptr = 0;
                if ((len = str.Read(buf, 0, 2048)) <= 0)
                {
                    return 0;
                }
            }
            return buf[ptr++];
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        char Char()
        {
            byte b = 0;
            do b = read();
            while (b < 33 || 126 < b);
            return (char)b;
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        virtual public string Scan()
        {
            var sb = new StringBuilder();
            for (var b = Char(); b >= 33 && b <= 126; b = (char)read())
                sb.Append(b);
            return sb.ToString();
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        virtual public long Long()
        {
            long ret = 0; byte b = 0; var ng = false;
            do b = read();
            while (b != '-' && (b < '0' || '9' < b));
            if (b == '-') { ng = true; b = read(); }
            for (; true; b = read())
            {
                if (b < '0' || '9' < b)
                    return ng ? -ret : ret;
                else ret = (ret << 3) + (ret << 1) + b - '0';
            }
        }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        virtual public double Double() { return double.Parse(Scan(), CultureInfo.InvariantCulture); }
    }
    class LIB_FastIODebug : LIB_FastIO
    {
        Queue<string> param = new Queue<string>();
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        string NextString() { if (param.Count == 0) foreach (var item in Console.ReadLine().Split(' ')) param.Enqueue(item); return param.Dequeue(); }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public LIB_FastIODebug() { }
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public override string Scan() => NextString();
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public override long Long() => long.Parse(NextString());
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public override double Double() => double.Parse(NextString());
    }
}
0