結果
問題 |
No.3014 岩井満足性問題
|
ユーザー |
![]() |
提出日時 | 2025-01-25 13:33:01 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 2,840 bytes |
コンパイル時間 | 469 ms |
コンパイル使用メモリ | 82,360 KB |
実行使用メモリ | 415,384 KB |
最終ジャッジ日時 | 2025-01-25 22:50:49 |
合計ジャッジ時間 | 32,075 ms |
ジャッジサーバーID (参考情報) |
judge7 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 MLE * 1 |
other | AC * 11 TLE * 3 MLE * 4 |
ソースコード
import sys input = lambda: sys.stdin.readline().rstrip() # sys.setrecursionlimit(10**7) # sys.set_int_max_str_digits(10**6) # import pypyjit # pypyjit.set_param('max_unroll_recursion=-1') def mp():return map(int,input().split()) def lmp():return list(map(int,input().split())) def lm1(LIST): return list(map(lambda x:x-1, LIST)) def mps(A):return [tuple(map(int, input().split())) for _ in range(A)] def stoi(LIST):return list(map(int,LIST)) def itos(LIST):return list(map(str,LIST)) def atoi(LIST): return [ord(i)-ord("a") for i in LIST] def Atoi(LIST): return [ord(i)-ord("A") for i in LIST] def LT(LIST,N): return LIST[bisect.bisect_left(LIST,N)-1] def LE(LIST,N): return LIST[bisect.bisect_right(LIST,N)-1] def GT(LIST,N): return LIST[bisect.bisect_right(LIST,N)] def GE(LIST,N): return LIST[bisect.bisect_left(LIST,N)] def bitA(X,A):return X & 1<<A == 1<<A def gtoi(x,y,h,w):return x*w+y import math import bisect import heapq import time import random as rd import itertools from copy import copy as cc from copy import deepcopy as dc from itertools import accumulate, product from collections import Counter, defaultdict, deque # from atcoder.dsu import DSU # from atcoder.fenwicktree import FenwickTree # from atcoder.segtree import SegTree # (op, ide_ele, LIST) # from atcoder.lazysegtree import LazySegTree # (op, ide_ele, mapping, composition, _id, lst) def ceil(U,V):return (U+V-1)//V def modf1(N,MOD):return (N-1)%MOD+1 def pmat(list): for i in list:print(*i) m4 = [[1,0],[0,1],[-1,0],[0,-1]] m8 = [[-1,-1],[-1,0],[-1,1],[0,-1],[0,1],[1,-1],[1,0],[1,1]] inf = (1<<63)-1 mod = 998244353 # import heapq # def dijkstra(start,edge): # # edge[i] = [(distance, j), ...] # dist = [inf]*len(edge) # dist[start] = 0 # q = [(0, start)] # while q: # # u から v に辺を張る # cost, u = heapq.heappop(q) # if dist[u] < cost:continue # for ncost, v in edge[u]: # if (dist[u]+ncost) < dist[v]: # dist[v] = dist[u]+ncost # heapq.heappush(q, (dist[v], v)) # return dist # # n,m,p,y = mp() # edge = [[] for i in range(n)] # for i in range(m): # a,b,c = mp() # a -= 1 # b -= 1 # edge[a].append((c,b)) # edge[b].append((c,a)) # D = dijkstra(0,edge) # ans = 0 # for i in range(p): # d,e = mp() # d -= 1 # ans = max(ans,(y-D[d])//e) # print(ans) # n,d,K = mp() a = lmp() c = lmp() dp = [[-inf]*(K+1) for i in range(d+1)] dp[0][0] = 0 for i in range(n): nxt = dc(dp) for j in range(d): for k in range(K+1): if k+c[i] < K: nxt[j+1][k+c[i]] = max(nxt[j+1][k+c[i]], dp[j][k]+a[i]) else: nxt[j+1][K] = max(nxt[j+1][K], dp[j][k]+a[i]) dp = nxt #print(dp) ans = dp[d][K] if ans < -10**18: print("No") else: print(ans)