結果

問題 No.3014 岩井満足性問題
ユーザー uuuus17
提出日時 2025-01-25 13:59:19
言語 PyPy3
(7.3.15)
結果
MLE  
実行時間 -
コード長 2,457 bytes
コンパイル時間 170 ms
コンパイル使用メモリ 82,188 KB
実行使用メモリ 351,696 KB
最終ジャッジ日時 2025-01-25 23:05:24
合計ジャッジ時間 16,479 ms
ジャッジサーバーID
(参考情報)
judge9 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2 MLE * 1
other AC * 9 WA * 6 TLE * 2 MLE * 1
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
input = lambda: sys.stdin.readline().rstrip()
# sys.setrecursionlimit(10**7)
# sys.set_int_max_str_digits(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
def mp():return map(int,input().split())
def lmp():return list(map(int,input().split()))
def lm1(LIST): return list(map(lambda x:x-1, LIST))
def mps(A):return [tuple(map(int, input().split())) for _ in range(A)]
def stoi(LIST):return list(map(int,LIST))
def itos(LIST):return list(map(str,LIST))
def atoi(LIST): return [ord(i)-ord("a") for i in LIST]
def Atoi(LIST): return [ord(i)-ord("A") for i in LIST]
def LT(LIST,N): return LIST[bisect.bisect_left(LIST,N)-1]
def LE(LIST,N): return LIST[bisect.bisect_right(LIST,N)-1]
def GT(LIST,N): return LIST[bisect.bisect_right(LIST,N)]
def GE(LIST,N): return LIST[bisect.bisect_left(LIST,N)]
def bitA(X,A):return X & 1<<A == 1<<A
def gtoi(x,y,h,w):return x*w+y
import math
import bisect
import heapq
import time
import random as rd
import itertools
from copy import copy as cc
from copy import deepcopy as dc
from itertools import accumulate, product
from collections import Counter, defaultdict, deque
# from atcoder.dsu import DSU
# from atcoder.fenwicktree import FenwickTree
# from atcoder.segtree import SegTree # (op, ide_ele, LIST)
# from atcoder.lazysegtree import LazySegTree # (op, ide_ele, mapping, composition, _id, lst)
def ceil(U,V):return (U+V-1)//V
def modf1(N,MOD):return (N-1)%MOD+1
def pmat(list):
for i in list:print(*i)
m4 = [[1,0],[0,1],[-1,0],[0,-1]]
m8 = [[-1,-1],[-1,0],[-1,1],[0,-1],[0,1],[1,-1],[1,0],[1,1]]
inf = (1<<63)-1
mod = 998244353
n,d,K = mp()
a = lmp()
c = lmp()
dp = [[-inf]*(K+1) for i in range(d+1)]
dp[0][0] = 0
for i in range(n):
nxt = [[-inf]*(K+1) for _ in range(d+1)]
for j in range(d):
for k in range(K+1):
if k+c[i] < K:
nxt[j+1][k+c[i]] = max(nxt[j+1][k+c[i]], dp[j][k]+a[i])
else:
nxt[j+1][K] = max(nxt[j+1][K], dp[j][k]+a[i])
nxt[j][k] = max(nxt[j][k],dp[j][k])
dp = nxt
#print(dp)
ans = dp[d][K]
if ans < -10**15:
print("No")
else:
print(ans)
#
# s = input()
# if len(s) < 3:
# print(0)
# exit()
# ind = -1
# for i in range(len(s)-2):
# if s[i] == "1" and s[i+1] == "1" and s[i+2] == "0":
# ind = i
# break
# if ind == -1:
# print(0)
# exit()
# c = 0
# for i in range(ind,len(s)):
# if s[i] == "0":c += 1
# print(c*(c+1)//2)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0