結果
| 問題 |
No.3015 右に寄せろ!
|
| コンテスト | |
| ユーザー |
uuuus17
|
| 提出日時 | 2025-01-25 16:27:08 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 98 ms / 2,000 ms |
| コード長 | 2,555 bytes |
| コンパイル時間 | 351 ms |
| コンパイル使用メモリ | 82,316 KB |
| 実行使用メモリ | 75,776 KB |
| 最終ジャッジ日時 | 2025-01-25 23:52:18 |
| 合計ジャッジ時間 | 4,082 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 36 |
ソースコード
import sys
input = lambda: sys.stdin.readline().rstrip()
# sys.setrecursionlimit(10**7)
# sys.set_int_max_str_digits(10**6)
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
def mp():return map(int,input().split())
def lmp():return list(map(int,input().split()))
def lm1(LIST): return list(map(lambda x:x-1, LIST))
def mps(A):return [tuple(map(int, input().split())) for _ in range(A)]
def stoi(LIST):return list(map(int,LIST))
def itos(LIST):return list(map(str,LIST))
def atoi(LIST): return [ord(i)-ord("a") for i in LIST]
def Atoi(LIST): return [ord(i)-ord("A") for i in LIST]
def LT(LIST,N): return LIST[bisect.bisect_left(LIST,N)-1]
def LE(LIST,N): return LIST[bisect.bisect_right(LIST,N)-1]
def GT(LIST,N): return LIST[bisect.bisect_right(LIST,N)]
def GE(LIST,N): return LIST[bisect.bisect_left(LIST,N)]
def bitA(X,A):return X & 1<<A == 1<<A
def gtoi(x,y,h,w):return x*w+y
import math
import bisect
import heapq
import time
import random as rd
import itertools
from copy import copy as cc
from copy import deepcopy as dc
from itertools import accumulate, product
from collections import Counter, defaultdict, deque
# from atcoder.dsu import DSU
# from atcoder.fenwicktree import FenwickTree
# from atcoder.segtree import SegTree # (op, ide_ele, LIST)
# from atcoder.lazysegtree import LazySegTree # (op, ide_ele, mapping, composition, _id, lst)
def ceil(U,V):return (U+V-1)//V
def modf1(N,MOD):return (N-1)%MOD+1
def pmat(list):
for i in list:print(*i)
m4 = [[1,0],[0,1],[-1,0],[0,-1]]
m8 = [[-1,-1],[-1,0],[-1,1],[0,-1],[0,1],[1,-1],[1,0],[1,1]]
inf = (1<<63)-1
mod = 998244353
# n,d,K = mp()
# a = lmp()
# c = lmp()
# dp = [[-inf]*(K+1) for i in range(d+1)]
# dp[0][0] = 0
# for i in range(n):
# nxt = [[-inf]*(K+1) for _ in range(d+1)]
# for j in range(d):
# for k in range(K+1):
# if k+c[i] < K:
# nxt[j+1][k+c[i]] = max(nxt[j+1][k+c[i]], dp[j][k]+a[i])
# else:
# nxt[j+1][K] = max(nxt[j+1][K], dp[j][k]+a[i])
# nxt[j][k] = max(nxt[j][k],dp[j][k])
# dp = nxt
# #print(dp)
# ans = dp[d][K]
# if ans < -10**15:
# print("No")
# else:
# print(ans)
#
#
s = input()
if len(s) < 3:
print(0)
exit()
ind = -1
for i in range(len(s)-1):
if s[i] == "1" and s[i+1] == "1":
ind = i
break
if ind == -1:
print(0)
exit()
cz = 0
co = 0
ans = 0
for i in range(ind,len(s)):
if s[i] == "0":cz += 1
else:co += 1
if s[i] == "0":
ans += ceil((co-1),2)
if co % 2 == 1:co-=1
print(ans)
uuuus17