結果

問題 No.3002 多項式の割り算 〜easy〜
ユーザー erbowl
提出日時 2025-01-26 13:01:19
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 20,236 bytes
コンパイル時間 6,221 ms
コンパイル使用メモリ 339,392 KB
実行使用メモリ 6,400 KB
最終ジャッジ日時 2025-01-26 13:01:28
合計ジャッジ時間 7,335 ms
ジャッジサーバーID
(参考情報)
judge1 / judge6
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1 WA * 1
other AC * 8 WA * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

typedef long long ll;
typedef long double ld;
#include <bits/stdc++.h>
using namespace std;
// #define int long long
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
template<typename T>
using ordered_set = tree<T, null_type, std::less<T>, rb_tree_tag, tree_order_statistics_node_update>;
// std::cout << *s.find_by_order(1) << std::endl; // 2
// modint
template<int MOD> struct Fp {
// inner value
long long val;
// constructor
constexpr Fp() : val(0) { }
constexpr Fp(long long v) : val(v % MOD) {
if (val < 0) val += MOD;
}
constexpr long long get() const { return val; }
constexpr int get_mod() const { return MOD; }
// arithmetic operators
constexpr Fp operator + () const { return Fp(*this); }
constexpr Fp operator - () const { return Fp(0) - Fp(*this); }
constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; }
constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp &r) {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp &r) {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp &r) {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp &r) {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp pow(long long n) const {
Fp res(1), mul(*this);
while (n > 0) {
if (n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
constexpr Fp inv() const {
Fp res(1), div(*this);
return res / div;
}
// other operators
constexpr bool operator == (const Fp &r) const {
return this->val == r.val;
}
constexpr bool operator != (const Fp &r) const {
return this->val != r.val;
}
constexpr Fp& operator ++ () {
++val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -- () {
if (val == 0) val += MOD;
--val;
return *this;
}
constexpr Fp operator ++ (int) const {
Fp res = *this;
++*this;
return res;
}
constexpr Fp operator -- (int) const {
Fp res = *this;
--*this;
return res;
}
friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) {
is >> x.val;
x.val %= MOD;
if (x.val < 0) x.val += MOD;
return is;
}
friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) {
return os << x.val;
}
friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) {
return r.pow(n);
}
friend constexpr Fp<MOD> inv(const Fp<MOD> &r) {
return r.inv();
}
};
namespace NTT {
long long modpow(long long a, long long n, int mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, int mod) {
long long b = mod, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
u %= mod;
if (u < 0) u += mod;
return u;
}
int calc_primitive_root(int mod) {
if (mod == 2) return 1;
if (mod == 167772161) return 3;
if (mod == 469762049) return 3;
if (mod == 754974721) return 11;
if (mod == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
long long x = (mod - 1) / 2;
while (x % 2 == 0) x /= 2;
for (long long i = 3; i * i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) x /= i;
}
}
if (x > 1) divs[cnt++] = x;
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (modpow(g, (mod - 1) / divs[i], mod) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
int get_fft_size(int N, int M) {
int size_a = 1, size_b = 1;
while (size_a < N) size_a <<= 1;
while (size_b < M) size_b <<= 1;
return max(size_a, size_b) << 1;
}
// number-theoretic transform
template<class mint> void trans(vector<mint> &v, bool inv = false) {
if (v.empty()) return;
int N = (int)v.size();
int MOD = v[0].get_mod();
int PR = calc_primitive_root(MOD);
static bool first = true;
static vector<long long> vbw(30), vibw(30);
if (first) {
first = false;
for (int k = 0; k < 30; ++k) {
vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);
vibw[k] = modinv(vbw[k], MOD);
}
}
for (int i = 0, j = 1; j < N - 1; j++) {
for (int k = N >> 1; k > (i ^= k); k >>= 1);
if (i > j) swap(v[i], v[j]);
}
for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {
long long bw = vbw[k];
if (inv) bw = vibw[k];
for (int i = 0; i < N; i += t) {
mint w = 1;
for (int j = 0; j < t/2; ++j) {
int j1 = i + j, j2 = i + j + t/2;
mint c1 = v[j1], c2 = v[j2] * w;
v[j1] = c1 + c2;
v[j2] = c1 - c2;
w *= bw;
}
}
}
if (inv) {
long long invN = modinv(N, MOD);
for (int i = 0; i < N; ++i) v[i] = v[i] * invN;
}
}
// for garner
static constexpr int MOD0 = 754974721;
static constexpr int MOD1 = 167772161;
static constexpr int MOD2 = 469762049;
using mint0 = Fp<MOD0>;
using mint1 = Fp<MOD1>;
using mint2 = Fp<MOD2>;
static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);
static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);
static const mint2 imod01 = 187290749; // imod1 / MOD0;
// small case (T = mint, long long)
template<class T> vector<T> naive_mul(const vector<T> &A, const vector<T> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
vector<T> res(N + M - 1);
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
res[i + j] += A[i] * B[j];
return res;
}
// mul by convolution
template<class mint> vector<mint> mul(const vector<mint> &A, const vector<mint> &B) {
if (A.empty() || B.empty()) return {};
int N = (int)A.size(), M = (int)B.size();
if (min(N, M) < 30) return naive_mul(A, B);
int MOD = A[0].get_mod();
int size_fft = get_fft_size(N, M);
if (MOD == 998244353) {
vector<mint> a(size_fft), b(size_fft), c(size_fft);
for (int i = 0; i < N; ++i) a[i] = A[i];
for (int i = 0; i < M; ++i) b[i] = B[i];
trans(a), trans(b);
vector<mint> res(size_fft);
for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];
trans(res, true);
res.resize(N + M - 1);
return res;
}
vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);
vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);
vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);
for (int i = 0; i < N; ++i)
a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;
for (int i = 0; i < M; ++i)
b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;
trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);
for (int i = 0; i < size_fft; ++i) {
c0[i] = a0[i] * b0[i];
c1[i] = a1[i] * b1[i];
c2[i] = a2[i] * b2[i];
}
trans(c0, true), trans(c1, true), trans(c2, true);
mint mod0 = MOD0, mod01 = mod0 * MOD1;
vector<mint> res(N + M - 1);
for (int i = 0; i < N + M - 1; ++i) {
int y0 = c0[i].val;
int y1 = (imod0 * (c1[i] - y0)).val;
int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;
res[i] = mod01 * y2 + mod0 * y1 + y0;
}
return res;
}
};
// Polynomial
template<typename mint> struct Poly : vector<mint> {
using vector<mint>::vector;
// constructor
constexpr Poly(const vector<mint> &r) : vector<mint>(r) {}
// core operator
constexpr mint eval(const mint &v) {
mint res = 0;
for (int i = (int)this->size()-1; i >= 0; --i) {
res *= v;
res += (*this)[i];
}
return res;
}
constexpr Poly& normalize() {
while (!this->empty() && this->back() == 0) this->pop_back();
return *this;
}
// basic operator
constexpr Poly operator - () const noexcept {
Poly res = (*this);
for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];
return res;
}
constexpr Poly operator + (const mint &v) const { return Poly(*this) += v; }
constexpr Poly operator + (const Poly &r) const { return Poly(*this) += r; }
constexpr Poly operator - (const mint &v) const { return Poly(*this) -= v; }
constexpr Poly operator - (const Poly &r) const { return Poly(*this) -= r; }
constexpr Poly operator * (const mint &v) const { return Poly(*this) *= v; }
constexpr Poly operator * (const Poly &r) const { return Poly(*this) *= r; }
constexpr Poly operator / (const mint &v) const { return Poly(*this) /= v; }
constexpr Poly operator / (const Poly &r) const { return Poly(*this) /= r; }
constexpr Poly operator % (const Poly &r) const { return Poly(*this) %= r; }
constexpr Poly operator << (int x) const { return Poly(*this) <<= x; }
constexpr Poly operator >> (int x) const { return Poly(*this) >>= x; }
constexpr Poly& operator += (const mint &v) {
if (this->empty()) this->resize(1);
(*this)[0] += v;
return *this;
}
constexpr Poly& operator += (const Poly &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];
return this->normalize();
}
constexpr Poly& operator -= (const mint &v) {
if (this->empty()) this->resize(1);
(*this)[0] -= v;
return *this;
}
constexpr Poly& operator -= (const Poly &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];
return this->normalize();
}
constexpr Poly& operator *= (const mint &v) {
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;
return *this;
}
constexpr Poly& operator *= (const Poly &r) {
return *this = NTT::mul((*this), r);
}
constexpr Poly& operator <<= (int x) {
Poly res(x, 0);
res.insert(res.end(), begin(*this), end(*this));
return *this = res;
}
constexpr Poly& operator >>= (int x) {
Poly res;
res.insert(res.end(), begin(*this) + x, end(*this));
return *this = res;
}
// division, pow
constexpr Poly& operator /= (const mint &v) {
assert(v != 0);
mint iv = modinv(v);
for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;
return *this;
}
constexpr Poly& operator /= (const Poly &r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
if (this->size() < r.size()) {
this->clear();
return *this;
}
int need = (int)this->size() - (int)r.size() + 1;
*this = (rev().pre(need) * r.rev().inner_inv(need)).pre(need).rev();
return *this;
}
constexpr Poly& operator %= (const Poly &r) {
assert(!r.empty());
assert(r.back() != 0);
this->normalize();
Poly q = (*this) / r;
return *this -= q * r;
}
// FPS functions
constexpr Poly pre(int siz) const {
return Poly(begin(*this), begin(*this) + min((int)this->size(), siz));
}
constexpr Poly rev() const {
Poly res = *this;
reverse(begin(res), end(res));
return res;
}
// df/dx
constexpr Poly diff() const {
int n = (int)this->size();
Poly res(n-1);
for (int i = 1; i < n; ++i) res[i-1] = (*this)[i] * i;
return res;
}
// \int f dx
constexpr Poly integral() const {
int n = (int)this->size();
Poly res(n+1, 0);
for (int i = 0; i < n; ++i) res[i+1] = (*this)[i] / (i+1);
return res;
}
// inv(f), f[0] must not be 0
constexpr Poly inner_inv(int deg) const {
assert((*this)[0] != 0);
if (deg < 0) deg = (int)this->size();
Poly res({mint(1) / (*this)[0]});
for (int i = 1; i < deg; i <<= 1) {
res = (res + res - res * res * pre(i << 1)).pre(i << 1);
}
res.resize(deg);
return res;
}
constexpr Poly inner_inv() const {
return inner_inv((int)this->size());
}
// log(f) = \int f'/f dx, f[0] must be 1
constexpr Poly inner_log(int deg) const {
assert((*this)[0] == 1);
Poly res = (diff() * inner_inv(deg)).integral();
res.resize(deg);
return res;
}
constexpr Poly inner_log() const {
return inner_log((int)this->size());
}
// exp(f), f[0] must be 0
constexpr Poly inner_exp(int deg) const {
assert((*this)[0] == 0);
Poly res(1, 1);
for (int i = 1; i < deg; i <<= 1) {
res = res * (pre(i << 1) - res.inner_log(i << 1) + 1).pre(i << 1);
}
res.resize(deg);
return res;
}
constexpr Poly inner_exp() const {
return inner_exp((int)this->size());
}
// pow(f) = exp(e * log f)
constexpr Poly inner_pow(long long e, int deg) const {
if (e == 0) {
Poly res(deg, 0);
res[0] = 1;
return res;
}
long long i = 0;
while (i < (int)this->size() && (*this)[i] == 0) ++i;
if (i == (int)this->size() || i > (deg - 1) / e) return Poly(deg, 0);
mint k = (*this)[i];
Poly res = ((((*this) >> i) / k).inner_log(deg) * e).inner_exp(deg)
* mint(k).inner_pow(e) << (e * i);
res.resize(deg);
return res;
}
constexpr Poly inner_pow(long long e) const {
return inner_pow(e, (int)this->size());
}
};
//------------------------------//
// Polynomial Algorithms
//------------------------------//
// Binomial coefficient
template<class T> struct BiCoef {
vector<T> fact_, inv_, finv_;
constexpr BiCoef() {}
constexpr BiCoef(int n) : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
int MOD = fact_[0].get_mod();
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[MOD%i] * (MOD/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T fact(int n) const {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const {
if (n < 0) return 0;
return finv_[n];
}
};
// Polynomial Taylor Shift
// given: f(x), c
// find: coefficients of f(x + c)
template<class mint> Poly<mint> PolynomialTaylorShift(const Poly<mint> &f, long long c) {
int N = (int)f.size() - 1;
BiCoef<mint> bc(N + 1);
// convolution
Poly<mint> p(N + 1), q(N + 1);
for (int i = 0; i <= N; ++i) {
p[i] = f[i] * bc.fact(i);
q[N - i] = mint(c).pow(i) * bc.finv(i);
}
Poly<mint> pq = p * q;
// result
Poly<mint> res(N + 1);
for (int i = 0; i <= N; ++i) res[i] = pq[i + N] * bc.finv(i);
return res;
}
//------------------------------//
// for any mod
//------------------------------//
// dynamic modint
struct DynamicModint {
using mint = DynamicModint;
// static menber
static int MOD;
// inner value
long long val;
// constructor
DynamicModint() : val(0) { }
DynamicModint(long long v) : val(v % MOD) {
if (val < 0) val += MOD;
}
long long get() const { return val; }
static int get_mod() { return MOD; }
static void set_mod(int mod) { MOD = mod; }
// arithmetic operators
mint operator + () const { return mint(*this); }
mint operator - () const { return mint(0) - mint(*this); }
mint operator + (const mint &r) const { return mint(*this) += r; }
mint operator - (const mint &r) const { return mint(*this) -= r; }
mint operator * (const mint &r) const { return mint(*this) *= r; }
mint operator / (const mint &r) const { return mint(*this) /= r; }
mint& operator += (const mint &r) {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
mint& operator -= (const mint &r) {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
mint& operator *= (const mint &r) {
val = val * r.val % MOD;
return *this;
}
mint& operator /= (const mint &r) {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
mint pow(long long n) const {
mint res(1), mul(*this);
while (n > 0) {
if (n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
mint inv() const {
mint res(1), div(*this);
return res / div;
}
// other operators
bool operator == (const mint &r) const {
return this->val == r.val;
}
bool operator != (const mint &r) const {
return this->val != r.val;
}
mint& operator ++ () {
++val;
if (val >= MOD) val -= MOD;
return *this;
}
mint& operator -- () {
if (val == 0) val += MOD;
--val;
return *this;
}
mint operator ++ (int) {
mint res = *this;
++*this;
return res;
}
mint operator -- (int) {
mint res = *this;
--*this;
return res;
}
friend istream& operator >> (istream &is, mint &x) {
is >> x.val;
x.val %= x.get_mod();
if (x.val < 0) x.val += x.get_mod();
return is;
}
friend ostream& operator << (ostream &os, const mint &x) {
return os << x.val;
}
friend mint pow(const mint &r, long long n) {
return r.pow(n);
}
friend mint inv(const mint &r) {
return r.inv();
}
};
signed main(){
//
ios_base::sync_with_stdio(false);
cin.tie(0);
const int MOD = 924844033;
using mint = Fp<MOD>;
ll a,b;
cin >> a>>b;
Poly<mint> f(b+1);
f[b] = a;
Poly<mint> g(3);
g[2] = 1;
g[1] = 1;
g[0] = 1;
auto r = f%g;
cout << r[1]<<" "<<r[0] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0