結果
問題 | No.3002 多項式の割り算 〜easy〜 |
ユーザー |
|
提出日時 | 2025-01-26 13:01:19 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 20,236 bytes |
コンパイル時間 | 6,221 ms |
コンパイル使用メモリ | 339,392 KB |
実行使用メモリ | 6,400 KB |
最終ジャッジ日時 | 2025-01-26 13:01:28 |
合計ジャッジ時間 | 7,335 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge6 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 WA * 1 |
other | AC * 8 WA * 14 |
ソースコード
typedef long long ll;typedef long double ld;#include <bits/stdc++.h>using namespace std;// #define int long long#include <ext/pb_ds/assoc_container.hpp>using namespace __gnu_pbds;template<typename T>using ordered_set = tree<T, null_type, std::less<T>, rb_tree_tag, tree_order_statistics_node_update>;// std::cout << *s.find_by_order(1) << std::endl; // 2// modinttemplate<int MOD> struct Fp {// inner valuelong long val;// constructorconstexpr Fp() : val(0) { }constexpr Fp(long long v) : val(v % MOD) {if (val < 0) val += MOD;}constexpr long long get() const { return val; }constexpr int get_mod() const { return MOD; }// arithmetic operatorsconstexpr Fp operator + () const { return Fp(*this); }constexpr Fp operator - () const { return Fp(0) - Fp(*this); }constexpr Fp operator + (const Fp &r) const { return Fp(*this) += r; }constexpr Fp operator - (const Fp &r) const { return Fp(*this) -= r; }constexpr Fp operator * (const Fp &r) const { return Fp(*this) *= r; }constexpr Fp operator / (const Fp &r) const { return Fp(*this) /= r; }constexpr Fp& operator += (const Fp &r) {val += r.val;if (val >= MOD) val -= MOD;return *this;}constexpr Fp& operator -= (const Fp &r) {val -= r.val;if (val < 0) val += MOD;return *this;}constexpr Fp& operator *= (const Fp &r) {val = val * r.val % MOD;return *this;}constexpr Fp& operator /= (const Fp &r) {long long a = r.val, b = MOD, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b, swap(a, b);u -= t * v, swap(u, v);}val = val * u % MOD;if (val < 0) val += MOD;return *this;}constexpr Fp pow(long long n) const {Fp res(1), mul(*this);while (n > 0) {if (n & 1) res *= mul;mul *= mul;n >>= 1;}return res;}constexpr Fp inv() const {Fp res(1), div(*this);return res / div;}// other operatorsconstexpr bool operator == (const Fp &r) const {return this->val == r.val;}constexpr bool operator != (const Fp &r) const {return this->val != r.val;}constexpr Fp& operator ++ () {++val;if (val >= MOD) val -= MOD;return *this;}constexpr Fp& operator -- () {if (val == 0) val += MOD;--val;return *this;}constexpr Fp operator ++ (int) const {Fp res = *this;++*this;return res;}constexpr Fp operator -- (int) const {Fp res = *this;--*this;return res;}friend constexpr istream& operator >> (istream &is, Fp<MOD> &x) {is >> x.val;x.val %= MOD;if (x.val < 0) x.val += MOD;return is;}friend constexpr ostream& operator << (ostream &os, const Fp<MOD> &x) {return os << x.val;}friend constexpr Fp<MOD> pow(const Fp<MOD> &r, long long n) {return r.pow(n);}friend constexpr Fp<MOD> inv(const Fp<MOD> &r) {return r.inv();}};namespace NTT {long long modpow(long long a, long long n, int mod) {long long res = 1;while (n > 0) {if (n & 1) res = res * a % mod;a = a * a % mod;n >>= 1;}return res;}long long modinv(long long a, int mod) {long long b = mod, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b, swap(a, b);u -= t * v, swap(u, v);}u %= mod;if (u < 0) u += mod;return u;}int calc_primitive_root(int mod) {if (mod == 2) return 1;if (mod == 167772161) return 3;if (mod == 469762049) return 3;if (mod == 754974721) return 11;if (mod == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;long long x = (mod - 1) / 2;while (x % 2 == 0) x /= 2;for (long long i = 3; i * i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) x /= i;}}if (x > 1) divs[cnt++] = x;for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (modpow(g, (mod - 1) / divs[i], mod) == 1) {ok = false;break;}}if (ok) return g;}}int get_fft_size(int N, int M) {int size_a = 1, size_b = 1;while (size_a < N) size_a <<= 1;while (size_b < M) size_b <<= 1;return max(size_a, size_b) << 1;}// number-theoretic transformtemplate<class mint> void trans(vector<mint> &v, bool inv = false) {if (v.empty()) return;int N = (int)v.size();int MOD = v[0].get_mod();int PR = calc_primitive_root(MOD);static bool first = true;static vector<long long> vbw(30), vibw(30);if (first) {first = false;for (int k = 0; k < 30; ++k) {vbw[k] = modpow(PR, (MOD - 1) >> (k + 1), MOD);vibw[k] = modinv(vbw[k], MOD);}}for (int i = 0, j = 1; j < N - 1; j++) {for (int k = N >> 1; k > (i ^= k); k >>= 1);if (i > j) swap(v[i], v[j]);}for (int k = 0, t = 2; t <= N; ++k, t <<= 1) {long long bw = vbw[k];if (inv) bw = vibw[k];for (int i = 0; i < N; i += t) {mint w = 1;for (int j = 0; j < t/2; ++j) {int j1 = i + j, j2 = i + j + t/2;mint c1 = v[j1], c2 = v[j2] * w;v[j1] = c1 + c2;v[j2] = c1 - c2;w *= bw;}}}if (inv) {long long invN = modinv(N, MOD);for (int i = 0; i < N; ++i) v[i] = v[i] * invN;}}// for garnerstatic constexpr int MOD0 = 754974721;static constexpr int MOD1 = 167772161;static constexpr int MOD2 = 469762049;using mint0 = Fp<MOD0>;using mint1 = Fp<MOD1>;using mint2 = Fp<MOD2>;static const mint1 imod0 = 95869806; // modinv(MOD0, MOD1);static const mint2 imod1 = 104391568; // modinv(MOD1, MOD2);static const mint2 imod01 = 187290749; // imod1 / MOD0;// small case (T = mint, long long)template<class T> vector<T> naive_mul(const vector<T> &A, const vector<T> &B) {if (A.empty() || B.empty()) return {};int N = (int)A.size(), M = (int)B.size();vector<T> res(N + M - 1);for (int i = 0; i < N; ++i)for (int j = 0; j < M; ++j)res[i + j] += A[i] * B[j];return res;}// mul by convolutiontemplate<class mint> vector<mint> mul(const vector<mint> &A, const vector<mint> &B) {if (A.empty() || B.empty()) return {};int N = (int)A.size(), M = (int)B.size();if (min(N, M) < 30) return naive_mul(A, B);int MOD = A[0].get_mod();int size_fft = get_fft_size(N, M);if (MOD == 998244353) {vector<mint> a(size_fft), b(size_fft), c(size_fft);for (int i = 0; i < N; ++i) a[i] = A[i];for (int i = 0; i < M; ++i) b[i] = B[i];trans(a), trans(b);vector<mint> res(size_fft);for (int i = 0; i < size_fft; ++i) res[i] = a[i] * b[i];trans(res, true);res.resize(N + M - 1);return res;}vector<mint0> a0(size_fft, 0), b0(size_fft, 0), c0(size_fft, 0);vector<mint1> a1(size_fft, 0), b1(size_fft, 0), c1(size_fft, 0);vector<mint2> a2(size_fft, 0), b2(size_fft, 0), c2(size_fft, 0);for (int i = 0; i < N; ++i)a0[i] = A[i].val, a1[i] = A[i].val, a2[i] = A[i].val;for (int i = 0; i < M; ++i)b0[i] = B[i].val, b1[i] = B[i].val, b2[i] = B[i].val;trans(a0), trans(a1), trans(a2), trans(b0), trans(b1), trans(b2);for (int i = 0; i < size_fft; ++i) {c0[i] = a0[i] * b0[i];c1[i] = a1[i] * b1[i];c2[i] = a2[i] * b2[i];}trans(c0, true), trans(c1, true), trans(c2, true);mint mod0 = MOD0, mod01 = mod0 * MOD1;vector<mint> res(N + M - 1);for (int i = 0; i < N + M - 1; ++i) {int y0 = c0[i].val;int y1 = (imod0 * (c1[i] - y0)).val;int y2 = (imod01 * (c2[i] - y0) - imod1 * y1).val;res[i] = mod01 * y2 + mod0 * y1 + y0;}return res;}};// Polynomialtemplate<typename mint> struct Poly : vector<mint> {using vector<mint>::vector;// constructorconstexpr Poly(const vector<mint> &r) : vector<mint>(r) {}// core operatorconstexpr mint eval(const mint &v) {mint res = 0;for (int i = (int)this->size()-1; i >= 0; --i) {res *= v;res += (*this)[i];}return res;}constexpr Poly& normalize() {while (!this->empty() && this->back() == 0) this->pop_back();return *this;}// basic operatorconstexpr Poly operator - () const noexcept {Poly res = (*this);for (int i = 0; i < (int)res.size(); ++i) res[i] = -res[i];return res;}constexpr Poly operator + (const mint &v) const { return Poly(*this) += v; }constexpr Poly operator + (const Poly &r) const { return Poly(*this) += r; }constexpr Poly operator - (const mint &v) const { return Poly(*this) -= v; }constexpr Poly operator - (const Poly &r) const { return Poly(*this) -= r; }constexpr Poly operator * (const mint &v) const { return Poly(*this) *= v; }constexpr Poly operator * (const Poly &r) const { return Poly(*this) *= r; }constexpr Poly operator / (const mint &v) const { return Poly(*this) /= v; }constexpr Poly operator / (const Poly &r) const { return Poly(*this) /= r; }constexpr Poly operator % (const Poly &r) const { return Poly(*this) %= r; }constexpr Poly operator << (int x) const { return Poly(*this) <<= x; }constexpr Poly operator >> (int x) const { return Poly(*this) >>= x; }constexpr Poly& operator += (const mint &v) {if (this->empty()) this->resize(1);(*this)[0] += v;return *this;}constexpr Poly& operator += (const Poly &r) {if (r.size() > this->size()) this->resize(r.size());for (int i = 0; i < (int)r.size(); ++i) (*this)[i] += r[i];return this->normalize();}constexpr Poly& operator -= (const mint &v) {if (this->empty()) this->resize(1);(*this)[0] -= v;return *this;}constexpr Poly& operator -= (const Poly &r) {if (r.size() > this->size()) this->resize(r.size());for (int i = 0; i < (int)r.size(); ++i) (*this)[i] -= r[i];return this->normalize();}constexpr Poly& operator *= (const mint &v) {for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= v;return *this;}constexpr Poly& operator *= (const Poly &r) {return *this = NTT::mul((*this), r);}constexpr Poly& operator <<= (int x) {Poly res(x, 0);res.insert(res.end(), begin(*this), end(*this));return *this = res;}constexpr Poly& operator >>= (int x) {Poly res;res.insert(res.end(), begin(*this) + x, end(*this));return *this = res;}// division, powconstexpr Poly& operator /= (const mint &v) {assert(v != 0);mint iv = modinv(v);for (int i = 0; i < (int)this->size(); ++i) (*this)[i] *= iv;return *this;}constexpr Poly& operator /= (const Poly &r) {assert(!r.empty());assert(r.back() != 0);this->normalize();if (this->size() < r.size()) {this->clear();return *this;}int need = (int)this->size() - (int)r.size() + 1;*this = (rev().pre(need) * r.rev().inner_inv(need)).pre(need).rev();return *this;}constexpr Poly& operator %= (const Poly &r) {assert(!r.empty());assert(r.back() != 0);this->normalize();Poly q = (*this) / r;return *this -= q * r;}// FPS functionsconstexpr Poly pre(int siz) const {return Poly(begin(*this), begin(*this) + min((int)this->size(), siz));}constexpr Poly rev() const {Poly res = *this;reverse(begin(res), end(res));return res;}// df/dxconstexpr Poly diff() const {int n = (int)this->size();Poly res(n-1);for (int i = 1; i < n; ++i) res[i-1] = (*this)[i] * i;return res;}// \int f dxconstexpr Poly integral() const {int n = (int)this->size();Poly res(n+1, 0);for (int i = 0; i < n; ++i) res[i+1] = (*this)[i] / (i+1);return res;}// inv(f), f[0] must not be 0constexpr Poly inner_inv(int deg) const {assert((*this)[0] != 0);if (deg < 0) deg = (int)this->size();Poly res({mint(1) / (*this)[0]});for (int i = 1; i < deg; i <<= 1) {res = (res + res - res * res * pre(i << 1)).pre(i << 1);}res.resize(deg);return res;}constexpr Poly inner_inv() const {return inner_inv((int)this->size());}// log(f) = \int f'/f dx, f[0] must be 1constexpr Poly inner_log(int deg) const {assert((*this)[0] == 1);Poly res = (diff() * inner_inv(deg)).integral();res.resize(deg);return res;}constexpr Poly inner_log() const {return inner_log((int)this->size());}// exp(f), f[0] must be 0constexpr Poly inner_exp(int deg) const {assert((*this)[0] == 0);Poly res(1, 1);for (int i = 1; i < deg; i <<= 1) {res = res * (pre(i << 1) - res.inner_log(i << 1) + 1).pre(i << 1);}res.resize(deg);return res;}constexpr Poly inner_exp() const {return inner_exp((int)this->size());}// pow(f) = exp(e * log f)constexpr Poly inner_pow(long long e, int deg) const {if (e == 0) {Poly res(deg, 0);res[0] = 1;return res;}long long i = 0;while (i < (int)this->size() && (*this)[i] == 0) ++i;if (i == (int)this->size() || i > (deg - 1) / e) return Poly(deg, 0);mint k = (*this)[i];Poly res = ((((*this) >> i) / k).inner_log(deg) * e).inner_exp(deg)* mint(k).inner_pow(e) << (e * i);res.resize(deg);return res;}constexpr Poly inner_pow(long long e) const {return inner_pow(e, (int)this->size());}};//------------------------------//// Polynomial Algorithms//------------------------------//// Binomial coefficienttemplate<class T> struct BiCoef {vector<T> fact_, inv_, finv_;constexpr BiCoef() {}constexpr BiCoef(int n) : fact_(n, 1), inv_(n, 1), finv_(n, 1) {init(n);}constexpr void init(int n) {fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);int MOD = fact_[0].get_mod();for(int i = 2; i < n; i++){fact_[i] = fact_[i-1] * i;inv_[i] = -inv_[MOD%i] * (MOD/i);finv_[i] = finv_[i-1] * inv_[i];}}constexpr T com(int n, int k) const {if (n < k || n < 0 || k < 0) return 0;return fact_[n] * finv_[k] * finv_[n-k];}constexpr T fact(int n) const {if (n < 0) return 0;return fact_[n];}constexpr T inv(int n) const {if (n < 0) return 0;return inv_[n];}constexpr T finv(int n) const {if (n < 0) return 0;return finv_[n];}};// Polynomial Taylor Shift// given: f(x), c// find: coefficients of f(x + c)template<class mint> Poly<mint> PolynomialTaylorShift(const Poly<mint> &f, long long c) {int N = (int)f.size() - 1;BiCoef<mint> bc(N + 1);// convolutionPoly<mint> p(N + 1), q(N + 1);for (int i = 0; i <= N; ++i) {p[i] = f[i] * bc.fact(i);q[N - i] = mint(c).pow(i) * bc.finv(i);}Poly<mint> pq = p * q;// resultPoly<mint> res(N + 1);for (int i = 0; i <= N; ++i) res[i] = pq[i + N] * bc.finv(i);return res;}//------------------------------//// for any mod//------------------------------//// dynamic modintstruct DynamicModint {using mint = DynamicModint;// static menberstatic int MOD;// inner valuelong long val;// constructorDynamicModint() : val(0) { }DynamicModint(long long v) : val(v % MOD) {if (val < 0) val += MOD;}long long get() const { return val; }static int get_mod() { return MOD; }static void set_mod(int mod) { MOD = mod; }// arithmetic operatorsmint operator + () const { return mint(*this); }mint operator - () const { return mint(0) - mint(*this); }mint operator + (const mint &r) const { return mint(*this) += r; }mint operator - (const mint &r) const { return mint(*this) -= r; }mint operator * (const mint &r) const { return mint(*this) *= r; }mint operator / (const mint &r) const { return mint(*this) /= r; }mint& operator += (const mint &r) {val += r.val;if (val >= MOD) val -= MOD;return *this;}mint& operator -= (const mint &r) {val -= r.val;if (val < 0) val += MOD;return *this;}mint& operator *= (const mint &r) {val = val * r.val % MOD;return *this;}mint& operator /= (const mint &r) {long long a = r.val, b = MOD, u = 1, v = 0;while (b) {long long t = a / b;a -= t * b, swap(a, b);u -= t * v, swap(u, v);}val = val * u % MOD;if (val < 0) val += MOD;return *this;}mint pow(long long n) const {mint res(1), mul(*this);while (n > 0) {if (n & 1) res *= mul;mul *= mul;n >>= 1;}return res;}mint inv() const {mint res(1), div(*this);return res / div;}// other operatorsbool operator == (const mint &r) const {return this->val == r.val;}bool operator != (const mint &r) const {return this->val != r.val;}mint& operator ++ () {++val;if (val >= MOD) val -= MOD;return *this;}mint& operator -- () {if (val == 0) val += MOD;--val;return *this;}mint operator ++ (int) {mint res = *this;++*this;return res;}mint operator -- (int) {mint res = *this;--*this;return res;}friend istream& operator >> (istream &is, mint &x) {is >> x.val;x.val %= x.get_mod();if (x.val < 0) x.val += x.get_mod();return is;}friend ostream& operator << (ostream &os, const mint &x) {return os << x.val;}friend mint pow(const mint &r, long long n) {return r.pow(n);}friend mint inv(const mint &r) {return r.inv();}};signed main(){// これがないと落ちることがあるios_base::sync_with_stdio(false);cin.tie(0);const int MOD = 924844033;using mint = Fp<MOD>;ll a,b;cin >> a>>b;Poly<mint> f(b+1);f[b] = a;Poly<mint> g(3);g[2] = 1;g[1] = 1;g[0] = 1;auto r = f%g;cout << r[1]<<" "<<r[0] << endl;}