結果
問題 | No.3100 Parallel Translated |
ユーザー |
![]() |
提出日時 | 2025-01-28 22:41:21 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 22,521 bytes |
コンパイル時間 | 3,094 ms |
コンパイル使用メモリ | 282,696 KB |
実行使用メモリ | 7,720 KB |
最終ジャッジ日時 | 2025-04-11 20:50:11 |
合計ジャッジ時間 | 4,082 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 32 |
ソースコード
#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" using namespace std; #include<bits/stdc++.h> #line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp" namespace noya2 { template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &p){ os << p.first << " " << p.second; return os; } template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &p){ is >> p.first >> p.second; return is; } template <typename T> ostream &operator<<(ostream &os, const vector<T> &v){ int s = (int)v.size(); for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i]; return os; } template <typename T> istream &operator>>(istream &is, vector<T> &v){ for (auto &x : v) is >> x; return is; } void in() {} template <typename T, class... U> void in(T &t, U &...u){ cin >> t; in(u...); } void out() { cout << "\n"; } template <typename T, class... U, char sep = ' '> void out(const T &t, const U &...u){ cout << t; if (sizeof...(u)) cout << sep; out(u...); } template<typename T> void out(const vector<vector<T>> &vv){ int s = (int)vv.size(); for (int i = 0; i < s; i++) out(vv[i]); } struct IoSetup { IoSetup(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7); } } iosetup_noya2; } // namespace noya2 #line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp" namespace noya2{ const int iinf = 1'000'000'007; const long long linf = 2'000'000'000'000'000'000LL; const long long mod998 = 998244353; const long long mod107 = 1000000007; const long double pi = 3.14159265358979323; const vector<int> dx = {0,1,0,-1,1,1,-1,-1}; const vector<int> dy = {1,0,-1,0,1,-1,-1,1}; const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; const string alp = "abcdefghijklmnopqrstuvwxyz"; const string NUM = "0123456789"; void yes(){ cout << "Yes\n"; } void no(){ cout << "No\n"; } void YES(){ cout << "YES\n"; } void NO(){ cout << "NO\n"; } void yn(bool t){ t ? yes() : no(); } void YN(bool t){ t ? YES() : NO(); } } // namespace noya2 #line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" #line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp" namespace noya2{ unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){ if (a == 0 || b == 0) return a + b; int n = __builtin_ctzll(a); a >>= n; int m = __builtin_ctzll(b); b >>= m; while (a != b) { int mm = __builtin_ctzll(a - b); bool f = a > b; unsigned long long c = f ? a : b; b = f ? b : a; a = (c - b) >> mm; } return a << std::min(n, m); } template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); } long long sqrt_fast(long long n) { if (n <= 0) return 0; long long x = sqrt(n); while ((x + 1) * (x + 1) <= n) x++; while (x * x > n) x--; return x; } template<typename T> T floor_div(const T n, const T d) { assert(d != 0); return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0); } template<typename T> T ceil_div(const T n, const T d) { assert(d != 0); return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0); } template<typename T> void uniq(std::vector<T> &v){ std::sort(v.begin(),v.end()); v.erase(unique(v.begin(),v.end()),v.end()); } template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; } } // namespace noya2 #line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp" #define rep(i,n) for (int i = 0; i < (int)(n); i++) #define repp(i,m,n) for (int i = (m); i < (int)(n); i++) #define reb(i,n) for (int i = (int)(n-1); i >= 0; i--) #define all(v) (v).begin(),(v).end() using ll = long long; using ld = long double; using uint = unsigned int; using ull = unsigned long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using pil = pair<int,ll>; using pli = pair<ll,int>; namespace noya2{ /* ~ (. _________ . /) */ } using namespace noya2; #line 2 "c.cpp" namespace geometry2d { template<class Rat> requires std::constructible_from<Rat, int> && std::totally_ordered<Rat> constexpr int sign(const Rat &x){ const Rat Rat0 = Rat(0); return (x < Rat0 ? -1 : x > Rat0 ? 1 : 0); } template<class Rat> struct point { Rat x, y; point () {} point (Rat _x, Rat _y) : x(_x), y(_y) {} point &operator+=(const point &r){ x += r.x; y += r.y; return *this; } point &operator-=(const point &r){ x -= r.x; y -= r.y; return *this; } point operator+() const { return *this; } point operator-() const { x = -x; y = -y; return *this; } point &operator*=(const Rat &a){ x *= a; y *= a; return *this; } point &operator/=(const Rat &a){ x /= a; y /= a; return *this; } friend point operator+(const point& lhs, const point& rhs){ return point(lhs) += rhs; } friend point operator-(const point& lhs, const point& rhs){ return point(lhs) -= rhs; } friend point operator*(const point& lhs, const Rat& a){ return point(lhs) *= a; } friend point operator*(const Rat& a, const point& rhs){ return point(rhs) *= a; } friend point operator/(const point& lhs, const Rat& a){ return point(lhs) /= a; } auto operator<=>(const point&) const = default; friend std::ostream &operator<<(std::ostream &os, const point& p){ return os << p.x << ' ' << p.y; } friend std::istream &operator>>(std::istream &is, point &a){ Rat _x, _y; is >> _x >> _y; a = point(_x, _y); return (is); } friend Rat norm(const point &a) { return a.x*a.x + a.y*a.y; } friend Rat dot(const point &a, const point &b){ return a.x*b.x + a.y*b.y; } friend Rat cross(const point &a, const point &b){ return a.x*b.y - a.y*b.x; } friend int quadrant_atan2(const point &a){ // not origin point // ceil ( atan2(y,x) / (pi/2) ) int signx = sign(a.x); int signy = sign(a.y); if (signx <= 0 && signy < 0) return -1; if (signx > 0 && signy <= 0) return 0; if (signx >= 0 && signy > 0) return 1; if (signx < 0 && signy >= 0) return 2; // origin point x == 0 && y == 0 return 0; } friend int ccw(const point &a, point b, point c){ b -= a; c -= a; int signcr = sign(cross(b, c)); if (signcr > 0){ // ccw // c // a --> b return 1; } if (signcr < 0){ // cw // a --> b // c return -1; } if (sign(dot(b, c)) < 0){ // c a --> b return 2; } if (norm(b) < norm(c)){ // a --> b c return -2; } // a - c -> b return 0; } friend point rot90(const point &a){ return point(-a.y, a.x); } }; template<class Rat> using vec = point<Rat>; template<class Rat> struct arg_less { constexpr bool operator()(const point<Rat> &l, const point<Rat> &r){ int lq = quadrant_atan2(l); int rq = quadrant_atan2(r); if (lq == rq){ return sign(cross(l,r)) > 0; } return lq < rq; } }; template<class Rat> void arg_sort(std::vector<point<Rat>> &a){ sort(a.begin(), a.end(), arg_less<Rat>{}); } template<class Point> std::vector<int> upper_convex_hull_index(const std::vector<Point> &a){ if (a.empty()) return {}; std::vector<int> ids(a.size()); iota(ids.begin(), ids.end(), 0); std::sort(ids.begin(), ids.end(), [&](int l, int r){ return a[l] < a[r]; }); std::vector<int> st(a.size()); int ptr = 0; for (int i : ids){ if (ptr >= 1 && a[st[ptr-1]].x == a[i].x) ptr--; while (ptr >= 2){ int c = st[ptr-1]; int p = st[ptr-2]; if (sign(cross(a[i] - a[c], a[c] - a[p])) > 0){ break; } ptr--; } st[ptr++] = i; } st.resize(ptr); return st; } template<class Point> std::vector<int> lower_convex_hull_index(const std::vector<Point> &a){ if (a.empty()) return {}; std::vector<int> ids(a.size()); iota(ids.begin(), ids.end(), 0); std::sort(ids.begin(), ids.end(), [&](int l, int r){ return a[l] < a[r]; }); std::vector<int> st(a.size()); int ptr = 0; for (int i : ids){ if (ptr >= 1 && a[st[ptr-1]].x == a[i].x) continue; while (ptr >= 2){ int c = st[ptr-1]; int p = st[ptr-2]; if (sign(cross(a[c] - a[p], a[i] - a[c])) > 0){ break; } ptr--; } st[ptr++] = i; } st.resize(ptr); return st; } template<class Point> std::vector<int> convex_hull_index(const std::vector<Point> &a){ if (a.empty()) return {}; auto upper = upper_convex_hull_index(a); auto lower = lower_convex_hull_index(a); if (upper.size() == 1u){ // lower.size() == 1u if (a[upper.front()] == a[lower.front()]){ return {upper.front()}; } return {lower.front(), upper.front()}; } if (a[upper.back()] == a[lower.back()]){ lower.pop_back(); } lower.insert(lower.end(), upper.rbegin(), upper.rend()); if (a[upper.front()] == a[lower.front()]) lower.pop_back(); return lower; } template<class Rat> struct line { point<Rat> end0, end1; line (const point<Rat> &_end0, const point<Rat> &_end1) : end0(_end0), end1(_end1) { assert(end0 != end1); } auto operator<=>(const line &) const = default; bool operator==(const line &that) const { return is_parallel(*this, that) && has_common_point(*this, that.end0); } vec<Rat> direction() const { return end1 - end0; } friend bool has_common_point(const line &a, const point<Rat> &b){ return sign(cross(a.direction(), b - a.end0)) == 0; } friend bool has_common_point(const line &a, const line &b){ return !is_parallel(a, b) || has_common_point(a, b.end0); } friend point<Rat> common_point(const line &a, const line &b){ // assert(has_common_point(a, b)); if (is_parallel(a, b)){ return a.end0; } return a.end0 + a.direction() * cross(b.end0 - a.end0, b.end1 - b.end0) / cross(a.direction(), b.direction()); } friend point<Rat> projection(const line &a, const point<Rat> &b){ auto dir = a.direction(); return a.end0 + dir * (dot(dir, b - a.end0) / norm(dir)); } friend point<Rat> reflection(const line &a, const point<Rat> &b){ auto prj = projection(a, b); return prj + prj - b; } }; template<class Rat> struct segment { point<Rat> end0, end1; segment (const point<Rat> &_end0, const point<Rat> &_end1) : end0(_end0), end1(_end1) { assert(end0 != end1); } auto operator<=>(const segment &) const = default; bool operator==(const segment &that) const { return (end0 == that.end0 && end1 == that.end1) || (end1 == that.end0 && end0 == that.end1); } vec<Rat> direction() const { return end1 - end0; } friend bool has_common_point(const segment &a, const segment &b){ return ccw(a.end0, a.end1, b.end0) * ccw(a.end0, a.end1, b.end1) <= 0 && ccw(b.end0, b.end1, a.end0) * ccw(b.end0, b.end1, a.end1) <= 0; } friend bool has_common_point(const segment &a, const point<Rat> &b){ return ccw(a.end0, a.end1, b) == 0; } friend point<Rat> common_point(const segment &a, const segment &b){ // assert(has_common_point(a, b)); if (is_parallel(a, b)){ if (has_common_point(a, b.end0)){ return b.end0; } if (has_common_point(a, b.end1)){ return b.end1; } return a.end0; } return a.end0 + a.direction() * cross(b.end0 - a.end0, b.end1 - b.end0) / cross(a.direction(), b.direction()); } line<Rat> as_line() const { return line<Rat>(end0, end1); } }; template<class T> concept hasDirection = requires (T a){ a.direction(); }; template<hasDirection T, hasDirection U> bool is_parallel(const T &a, const U &b){ return sign(cross(a.direction(), b.direction())) == 0; } template<hasDirection T, hasDirection U> bool is_orthogonal(const T &a, const U &b){ return sign(dot(a.direction(), b.direction())) == 0; } } // namespace geometry2d #line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" #line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" #line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp" namespace noya2 { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m); // constexpr long long primitive_root_constexpr(long long m){ // if (m == (1LL << 47) - (1LL << 24) + 1) return 3; // return primitive_root_constexpr(static_cast<int>(m)); // } } // namespace noya2 #line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp" namespace noya2{ struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64); unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; template <int m> struct static_modint { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template<std::signed_integral T> constexpr static_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> constexpr static_modint(T v){ _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (uint)(z % umod()); return *this; } constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = is_prime_flag<m>; }; template <int id> struct dynamic_modint { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template<std::signed_integral T> dynamic_modint(T v){ long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template<std::unsigned_integral T> dynamic_modint(T v){ _v = (unsigned int)(v % umod()); } uint val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = noya2::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } friend std::ostream &operator<<(std::ostream &os, const mint& p) { return os << p.val(); } friend std::istream &operator>>(std::istream &is, mint &a) { long long t; is >> t; a = mint(t); return (is); } private: unsigned int _v; static barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> noya2::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; template<typename T> concept Modint = requires (T &a){ T::mod(); a.inv(); a.val(); a.pow(declval<int>()); }; } // namespace noya2 #line 306 "c.cpp" using mint = modint998244353; void solve(){ int n; in(n); using vec = geometry2d::point<ll>; vector<vec> a(n); in(a); mint ans = 0; rep(i,n-2){ ans += abs(cross(a[i+1]-a[0],a[i+2]-a[0])); } ans /= 2; out(ans); } int main(){ int t = 1; //in(t); while (t--) { solve(); } }