結果
問題 | No.2892 Lime and Karin |
ユーザー |
👑 |
提出日時 | 2025-01-30 05:48:29 |
言語 | Nim (2.2.0) |
結果 |
AC
|
実行時間 | 205 ms / 8,000 ms |
コード長 | 25,513 bytes |
コンパイル時間 | 5,815 ms |
コンパイル使用メモリ | 94,212 KB |
実行使用メモリ | 26,132 KB |
最終ジャッジ日時 | 2025-01-30 05:48:45 |
合計ジャッジ時間 | 13,676 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 52 |
コンパイルメッセージ
/home/judge/data/code/Main.nim(7, 1) template/generic instantiation of `ImportExpand` from here (97, 32) Warning: `typed` will change its meaning in future versions of Nim. `void` or no return type declaration at all has the same meaning as the current meaning of `typed` as return type declaration. [Deprecated]
ソースコード
import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2]) # source: https://github.com/kemuniku/cplib/tree/main/src/cplib/tmpl/citrus.nim ImportExpand "cplib/tmpl/citrus" <=== "when not declared CPLIB_TMPL_CITRUS:\n const CPLIB_TMPL_CITRUS* = 1\n {.warning[UnusedImport]: off.}\n {.hint[XDeclaredButNotUsed]: off.}\n import os\n import algorithm\n import sequtils\n import tables\n import macros\n import std/math\n import sets\n import strutils\n import strformat\n import sugar\n import streams\n import deques\n import bitops\n import heapqueue\n import options\n import hashes\n const MODINT998244353* = 998244353\n const MODINT1000000007* = 1000000007\n when not declared CPLIB_UTILS_CONSTANTS:\n const CPLIB_UTILS_CONSTANTS* = 1\n const INF32*: int32 = 100100111.int32\n const INF64*: int = int(3300300300300300491)\n \n const INFL = INF64\n type double* = float64\n let readNext = iterator(getsChar: bool = false): string {.closure.} =\n while true:\n var si: string\n try: si = stdin.readLine\n except EOFError: yield \"\"\n for s in si.split:\n if getsChar:\n for i in 0..<s.len():\n yield s[i..i]\n else:\n if s.isEmptyOrWhitespace: continue\n yield s\n proc input*(t: typedesc[string]): string = readNext()\n proc input*(t: typedesc[char]): char = readNext(true)[0]\n proc input*(t: typedesc[int]): int = readNext().parseInt\n proc input*(t: typedesc[float]): float = readNext().parseFloat\n macro input*(t: typedesc, n: varargs[int]): untyped =\n var repStr = \"\"\n for arg in n:\n repStr &= &\"({arg.repr}).newSeqWith \"\n parseExpr(&\"{repStr}input({t})\")\n macro input*(ts: varargs[auto]): untyped =\n var tupStr = \"\"\n for t in ts:\n tupStr &= &\"input({t.repr}),\"\n parseExpr(&\"({tupStr})\")\n macro input*(n: int, ts: varargs[auto]): untyped =\n for typ in ts:\n if typ.typeKind != ntyAnything:\n error(\"Expected typedesc, got \" & typ.repr, typ)\n parseExpr(&\"({n.repr}).newSeqWith input({ts.repr})\")\n proc `fmtprint`*(x: int or string or char or bool): string = return $x\n proc `fmtprint`*(x: float or float32 or float64): string = return &\"{x:.16f}\"\n proc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[T]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n proc `fmtprint`*[T](x: HeapQueue[T]): string =\n var q = x\n while q.len != 0:\n result &= &\"{q.pop()}\"\n if q.len != 0: result &= \" \"\n proc `fmtprint`*[T](x: CountTable[T]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc `fmtprint`*[K, V](x: Table[K, V]): string =\n result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n proc print*(prop: tuple[f: File, sepc: string, endc: string, flush: bool], args: varargs[string, `fmtprint`]) =\n for i in 0..<len(args):\n prop.f.write(&\"{args[i]}\")\n if i != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n if prop.flush: prop.f.flushFile()\n proc print*(args: varargs[string, `fmtprint`]) = print((f: stdout, sepc: \" \", endc: \"\\n\", flush: false), args)\n const LOCAL_DEBUG{.booldefine.} = false\n macro getSymbolName(x: typed): string = x.toStrLit\n macro debug*(args: varargs[untyped]): untyped =\n when LOCAL_DEBUG:\n result = newNimNode(nnkStmtList, args)\n template prop(e: string = \"\"): untyped = (f: stderr, sepc: \"\", endc: e, flush: true)\n for i, arg in args:\n if arg.kind == nnkStrLit:\n result.add(quote do: print(prop(), \"\\\"\", `arg`, \"\\\"\"))\n else:\n result.add(quote do: print(prop(\": \"), getSymbolName(`arg`)))\n result.add(quote do: print(prop(), `arg`))\n if i != args.len - 1: result.add(quote do: print(prop(), \", \"))\n else: result.add(quote do: print(prop(), \"\\n\"))\n else:\n return (quote do: discard)\n proc `%`*(x: SomeInteger, y: SomeInteger): int =\n result = x mod y\n if y > 0 and result < 0: result += y\n if y < 0 and result > 0: result += y\n proc `//`*(x: SomeInteger, y: SomeInteger): int =\n result = x div y\n if y > 0 and result * y > x: result -= 1\n if y < 0 and result * y < x: result -= 1\n proc `^`*(x: SomeInteger, y: SomeInteger): int = x xor y\n proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n proc `|`*(x: SomeInteger, y: SomeInteger): int = x or y\n proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n proc `<<`*(x: SomeInteger, y: SomeInteger): int = x shl y\n proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n proc `//=`*(x: var SomeInteger, y: SomeInteger): void = x = x // y\n proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n proc `&=`*(x: var SomeInteger, y: SomeInteger): void = x = x & y\n proc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n proc `>>=`*(x: var SomeInteger, y: SomeInteger): void = x = x >> y\n proc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n proc `[]`*(x, n: int): bool = (x and (1 shl n)) != 0\n proc `[]=`*(x: var int, n: int, i: bool) =\n if i: x = x or (1 << n)\n else: (if x[n]: x = x xor (1 << n))\n proc pow*(a, n: int, m = INF64): int =\n var\n rev = 1\n a = a\n n = n\n while n > 0:\n if n % 2 != 0: rev = (rev * a) mod m\n if n > 1: a = (a * a) mod m\n n >>= 1\n return rev\n when not declared CPLIB_MATH_ISQRT:\n const CPLIB_MATH_ISQRT* = 1\n proc isqrt*(n: int): int =\n var x = n\n var y = (x + 1) shr 1\n while y < x:\n x = y\n y = (x + n div x) shr 1\n return x\n \n proc chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n proc chmin*[T](x: var T, y: T): bool {.discardable.} = (if x > y: (x = y; return true; ) return false)\n proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n proc `min=`*[T](x: var T, y: T) = x = min(x, y)\n proc at*(x: char, a = '0'): int = int(x) - int(a)\n proc Yes*(b: bool = true): void = print(if b: \"Yes\" else: \"No\")\n proc No*(b: bool = true): void = Yes(not b)\n proc YES_upper*(b: bool = true): void = print(if b: \"YES\" else: \"NO\")\n proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n const DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n macro exit*(statement: untyped): untyped = (quote do: (`statement`; quit()))\n proc initHashSet[T](): Hashset[T] = initHashSet[T](0)\n" # source: https://github.com/kemuniku/cplib/tree/main/src/cplib/graph/graph.nim ImportExpand "cplib/graph/graph" <=== "when not declared CPLIB_GRAPH_GRAPH:\n const CPLIB_GRAPH_GRAPH* = 1\n\n import sequtils\n import math\n type DynamicGraph*[T] = ref object of RootObj\n edges*: seq[seq[(int32, T)]]\n len*: int\n type StaticGraph*[T] = ref object of RootObj\n src*, dst*: seq[int32]\n cost*: seq[T]\n elist*: seq[(int32, T)]\n start*: seq[int32]\n len*: int\n\n type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]\n type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]\n type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]\n\n type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n\n proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n g.edges[u].add((v.int32, cost))\n if not directed: g.edges[v].add((u.int32, cost))\n\n proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, true)\n\n proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n g.add_edge_dynamic_impl(u, v, cost, false)\n\n proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n g.add_edge_dynamic_impl(u, v, 1, true)\n\n proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n g.add_edge_dynamic_impl(u, v, 1, false)\n\n proc len*[T](G: WeightedGraph[T]): int = G.len\n proc len*(G: UnWeightedGraph): int = G.len\n\n iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield (e[0].int, e[1])\n iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n for e in g.edges[x]: yield e[0].int\n\n proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n g.src.add(u.int32)\n g.dst.add(v.int32)\n g.cost.add(cost)\n if not directed:\n g.src.add(v.int32)\n g.dst.add(u.int32)\n g.cost.add(cost)\n\n proc build_impl*[T](g: StaticGraph[T]) =\n g.start = newSeqWith(g.len + 1, 0.int32)\n for i in 0..<g.src.len:\n g.start[g.src[i]] += 1\n g.start.cumsum\n g.elist = newSeq[(int32, T)](g.start[^1])\n for i in countdown(g.src.len - 1, 0):\n var u = g.src[i]\n var v = g.dst[i]\n g.start[u] -= 1\n g.elist[g.start[u]] = (v, g.cost[i])\n proc build*(g: StaticGraphTypes) = g.build_impl()\n\n proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n result = WeightedDirectedStaticGraph[edgetype](\n src: newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost: newSeqOfCap[edgetype](capacity),\n elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*[T](g: var WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v, cost, true)\n\n proc initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n result = WeightedUnDirectedStaticGraph[edgetype](\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n cost: newSeqOfCap[edgetype](capacity*2),\n elist: newSeq[(int32, edgetype)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n g.add_edge_static_impl(u, v, cost, false)\n\n proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n result = UnWeightedDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity),\n dst: newSeqOfCap[int32](capacity),\n cost: newSeqOfCap[int](capacity),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, true)\n\n proc initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n result = UnWeightedUnDirectedStaticGraph(\n src: newSeqOfCap[int32](capacity*2),\n dst: newSeqOfCap[int32](capacity*2),\n cost: newSeqOfCap[int](capacity*2),\n elist: newSeq[(int32, int)](0),\n start: newSeq[int32](0),\n len: N\n )\n proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n g.add_edge_static_impl(u, v, 1, false)\n\n proc static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n\n iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n iterator `[]`*(g: UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph, x: int): int =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield g.elist[i][0].int\n\n iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n for e in g.edges[x]: yield (e[0].int, e[1])\n iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n g.static_graph_initialized_check()\n for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n \n import tables\n\n type UnWeightedUnDirectedTableGraph*[T] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : UnWeightedUnDirectedGraph\n\n type UnWeightedDirectedTableGraph*[T] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : UnWeightedDirectedGraph\n\n type WeightedUnDirectedTableGraph*[T,S] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : WeightedUnDirectedGraph[S]\n\n type WeightedDirectedTableGraph*[T,S] = object \n toi* : Table[T,int]\n v* : seq[T]\n graph* : WeightedDirectedGraph[S]\n\n type UnWeightedTableGraph*[T] = UnWeightedUnDirectedTableGraph[T] or UnWeightedDirectedTableGraph[T]\n type WeightedTableGraph*[T,S] = WeightedUnDirectedTableGraph[T,S] or WeightedDirectedTableGraph[T,S]\n\n proc initUnWeightedUnDirectedTableGraph*[T](V:seq[T]):UnWeightedUnDirectedTableGraph[T]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initUnWeightedUnDirectedGraph(len(V))\n result.v = V\n\n proc initUnWeightedDirectedTableGraph*[T](V:seq[T]):UnWeightedDirectedTableGraph[T]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initUnWeightedDirectedGraph(len(V))\n result.v = V\n\n proc initWeightedUnDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedUnDirectedTableGraph[T,S]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initWeightedUnDirectedGraph(len(V),S)\n result.v = V\n\n proc initWeightedDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedDirectedTableGraph[T,S]=\n for i in 0..<len(V):\n result.toi[V[i]] = i\n result.graph = initWeightedDirectedGraph(len(V),S)\n result.v = V\n\n proc add_edge*[T](g: var UnWeightedTableGraph[T],u,v:int)=\n g.graph.add_edge(g.toi[u],g.toi[v])\n\n proc add_edge*[T,S](g: var WeightedTableGraph[T,S],u,v:int,cost:S)=\n g.graph.add_edge(g.toi[u],g.toi[v],cost)\n\n iterator `[]`*[T,S](g: WeightedDirectedTableGraph[T,S] or WeightedUnDirectedTableGraph[T,S], x: T): (T, S) = \n for (x,y) in g.graph[g.toi[x]]:\n yield (g.v[x],y)\n iterator `[]`*[T](g: UnWeightedDirectedTableGraph[T] or UnWeightedUnDirectedTableGraph[T], x: T): T = \n for x in g.graph[g.toi[x]]:\n yield g.v[x]\n\n" # source: https://github.com/zer0-star/Nim-ACL/tree/master/src/atcoder/fenwicktree.nim ImportExpand "atcoder/fenwicktree" <=== "when not declared ATCODER_FENWICKTREE_HPP:\n const ATCODER_FENWICKTREE_HPP* = 1\n\n import std/sequtils\n when not declared ATCODER_INTERNAL_TYPE_TRAITS_HPP:\n const ATCODER_INTERNAL_TYPE_TRAITS_HPP* = 1\n \n #template <class T>\n #using is_signed_int128 =\n # typename std::conditional<std::is_same<T, __int128_t>::value ||\n # std::is_same<T, __int128>::value,\n # std::true_type,\n # std::false_type>::type;\n #\n #template <class T>\n #using is_unsigned_int128 =\n # typename std::conditional<std::is_same<T, __uint128_t>::value ||\n # std::is_same<T, unsigned __int128>::value,\n # std::true_type,\n # std::false_type>::type;\n #\n #template <class T>\n #using make_unsigned_int128 =\n # typename std::conditional<std::is_same<T, __int128_t>::value,\n # __uint128_t,\n # unsigned __int128>;\n #\n #template <class T>\n #using is_integral = typename std::conditional<std::is_integral<T>::value ||\n # is_signed_int128<T>::value ||\n # is_unsigned_int128<T>::value,\n # std::true_type,\n # std::false_type>::type;\n #\n #template <class T>\n #using is_signed_int = typename std::conditional<(is_integral<T>::value &&\n # std::is_signed<T>::value) ||\n # is_signed_int128<T>::value,\n # std::true_type,\n # std::false_type>::type;\n #\n #template <class T>\n #using is_unsigned_int =\n # typename std::conditional<(is_integral<T>::value &&\n # std::is_unsigned<T>::value) ||\n # is_unsigned_int128<T>::value,\n # std::true_type,\n # std::false_type>::type;\n #\n #template <class T>\n #using to_unsigned = typename std::conditional<\n # is_signed_int128<T>::value,\n # make_unsigned_int128<T>,\n # typename std::conditional<std::is_signed<T>::value,\n # std::make_unsigned<T>,\n # std::common_type<T>>::type>::type;\n #\n \n # template <class T> using is_integral = typename std::is_integral<T>;\n \n # template <class T>\n # using is_signed_int =\n # typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n # std::true_type,\n # std::false_type>::type;\n # \n # template <class T>\n # using is_unsigned_int =\n # typename std::conditional<is_integral<T>::value &&\n # std::is_unsigned<T>::value,\n # std::true_type,\n # std::false_type>::type;\n # \n # template <class T>\n # using to_unsigned = typename std::conditional<is_signed_int<T>::value,\n # std::make_unsigned<T>,\n # std::common_type<T>>::type;\n \n template to_unsigned*(T:typedesc):typedesc =\n when T is int: uint\n elif T is int8: uint8\n elif T is int16: uint16\n elif T is int32: uint32\n elif T is int64: uint64\n else: T\n \n #endif\n \n #template <class T>\n #using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n #\n #template <class T>\n #using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n #\n #template <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n \n template to_unsigned_t*(T):typed = to_unsigned(T)\n \n #\n #} // namespace internal\n #\n #} // namespace atcoder\n \n #endif // ATCODER_INTERNAL_TYPE_TRAITS_HPP\n \n when not declared ATCODER_RANGEUTILS_HPP:\n const ATCODER_RANGEUTILS_HPP* = 1\n type RangeType* = Slice[int] | HSlice[int, BackwardsIndex] | Slice[BackwardsIndex]\n type IndexType* = int | BackwardsIndex\n template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)\n template `^^`*(s, i: untyped): untyped =\n (when i is BackwardsIndex: s.len - int(i) else: int(i))\n template halfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =\n (s^^p.a, s^^p.b + 1)\n \n\n # Reference: https://en.wikipedia.org/wiki/Fenwick_tree\n type FenwickTree*[T, U] = object\n len*:int\n data*:seq[U]\n\n proc init*(self:typedesc[FenwickTree], n:int):auto =\n return self(len:n, data:newSeqWith(n, self.U(0)))\n proc init*(self:var FenwickTree, n:int) =\n if self.data.len < n: self.data.setLen(n)\n self.data.fill(0, n - 1, self.U(0))\n self.len = n\n\n template FenwickTreeType*(T:typedesc):typedesc[FenwickTree] =\n type U = to_unsigned(T)\n typedesc[FenwickTree[T, U]]\n template getType*(FT:typedesc[FenwickTree], T:typedesc):typedesc[FenwickTree] =\n FenwickTreeType(T)\n proc initFenwickTree*[T](n:int):auto = FenwickTreeType(T).init(n)\n\n proc add*[FT:FenwickTree](self: var FT, p:IndexType, x:FT.T) =\n var p = self^^p\n assert p in 0..<self.len\n p.inc\n while p <= self.len:\n self.data[p - 1] += FT.U(x)\n p += p and -p\n proc sum[FT:FenwickTree](self: FT, r:int):auto =\n result = FT.U(0)\n var r = r\n while r > 0:\n result += self.data[r - 1]\n r -= r and -r\n proc sum*[FT:FenwickTree](self: FT, p:RangeType):FT.T =\n let (l, r) = self.halfOpenEndpoints(p)\n assert 0 <= l and l <= r and r <= self.len\n return cast[FT.T](self.sum(r) - self.sum(l))\n proc `[]`*[FT:FenwickTree](self: FT, p:RangeType):FT.T = self.sum(p)\n" # {.checks: off.} var n = input(int) var g = initUnWeightedUnDirectedStaticGraph(n) for i in 0..<n-1: var u, v = input(int) - 1 g.add_edge(u, v) g.build var s = input(string) var a = (0..<n).toSeq.mapIt(if s[it] == '1': 1 else: -1) var sz = newSeqWith(n, 1) var heavy_child = newSeqWith(n, -1) proc calc_sz(u, p: int): int = for v in g[u]: if v == p: continue sz[u] += calc_sz(v, u) var mx = -1 for v in g[u]: if v == p: continue if chmax(mx, sz[v]): heavy_child[u] = v return sz[u] discard calc_sz(0, -1) var fw = initFenwickTree[int](2*n+1) var ans = 0 proc add(u, p, val: int) = fw.add(n+val+a[u], 1) for v in g[u]: if v == p: continue add(v, u, val+a[u]) proc calc(u, p, val, base, au: int) = var q = 2 * base - (val + a[u]) if au == -1: q += 2 ans += fw.sum(min(2*n+1, n+q)..<2*n+1) for v in g[u]: if v == p: continue calc(v, u, val+a[u], base, au) proc reset(u, p, val: int) = fw.add(n+val+a[u], -1) for v in g[u]: if v == p: continue reset(v, u, val+a[u]) proc dfs(u, p: int, keep: bool, val: int) = for v in g[u]: if v == p or v == heavy_child[u]: continue dfs(v, u, false, val+a[u]) if heavy_child[u] != -1: dfs(heavy_child[u], u, true, val+a[u]) for v in g[u]: if v == p or v == heavy_child[u]: continue calc(v, u, val+a[u], val+a[u], a[u]) add(v, u, val+a[u]) fw.add(n+val+a[u], 1) ans += fw.sum(n+val+1..<2*n+1) if not keep: reset(u, p, val) dfs(0, -1, true, 0) print(ans)