結果

問題 No.2892 Lime and Karin
ユーザー 👑 seekworser
提出日時 2025-01-30 05:48:29
言語 Nim
(2.2.0)
結果
AC  
実行時間 205 ms / 8,000 ms
コード長 25,513 bytes
コンパイル時間 5,815 ms
コンパイル使用メモリ 94,212 KB
実行使用メモリ 26,132 KB
最終ジャッジ日時 2025-01-30 05:48:45
合計ジャッジ時間 13,676 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 52
権限があれば一括ダウンロードができます
コンパイルメッセージ
/home/judge/data/code/Main.nim(7, 1) template/generic instantiation of `ImportExpand` from here
(97, 32) Warning: `typed` will change its meaning in future versions of Nim. `void` or no return type declaration at all has the same meaning as the current meaning of `typed` as return type declaration. [Deprecated]

ソースコード

diff #

import macros;macro ImportExpand(s:untyped):untyped = parseStmt($s[2])
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/tmpl/citrus.nim
ImportExpand "cplib/tmpl/citrus" <=== "when not declared CPLIB_TMPL_CITRUS:\n    const CPLIB_TMPL_CITRUS* = 1\n    {.warning[UnusedImport]: off.}\n    {.hint[XDeclaredButNotUsed]: off.}\n    import os\n    import algorithm\n    import sequtils\n    import tables\n    import macros\n    import std/math\n    import sets\n    import strutils\n    import strformat\n    import sugar\n    import streams\n    import deques\n    import bitops\n    import heapqueue\n    import options\n    import hashes\n    const MODINT998244353* = 998244353\n    const MODINT1000000007* = 1000000007\n    when not declared CPLIB_UTILS_CONSTANTS:\n        const CPLIB_UTILS_CONSTANTS* = 1\n        const INF32*: int32 = 100100111.int32\n        const INF64*: int = int(3300300300300300491)\n    \n    const INFL = INF64\n    type double* = float64\n    let readNext = iterator(getsChar: bool = false): string {.closure.} =\n        while true:\n            var si: string\n            try: si = stdin.readLine\n            except EOFError: yield \"\"\n            for s in si.split:\n                if getsChar:\n                    for i in 0..<s.len():\n                        yield s[i..i]\n                else:\n                    if s.isEmptyOrWhitespace: continue\n                    yield s\n    proc input*(t: typedesc[string]): string = readNext()\n    proc input*(t: typedesc[char]): char = readNext(true)[0]\n    proc input*(t: typedesc[int]): int = readNext().parseInt\n    proc input*(t: typedesc[float]): float = readNext().parseFloat\n    macro input*(t: typedesc, n: varargs[int]): untyped =\n        var repStr = \"\"\n        for arg in n:\n            repStr &= &\"({arg.repr}).newSeqWith \"\n        parseExpr(&\"{repStr}input({t})\")\n    macro input*(ts: varargs[auto]): untyped =\n        var tupStr = \"\"\n        for t in ts:\n            tupStr &= &\"input({t.repr}),\"\n        parseExpr(&\"({tupStr})\")\n    macro input*(n: int, ts: varargs[auto]): untyped =\n        for typ in ts:\n            if typ.typeKind != ntyAnything:\n                error(\"Expected typedesc, got \" & typ.repr, typ)\n        parseExpr(&\"({n.repr}).newSeqWith input({ts.repr})\")\n    proc `fmtprint`*(x: int or string or char or bool): string = return $x\n    proc `fmtprint`*(x: float or float32 or float64): string = return &\"{x:.16f}\"\n    proc `fmtprint`*[T](x: seq[T] or Deque[T] or HashSet[T] or set[T]): string = return x.toSeq.join(\" \")\n    proc `fmtprint`*[T, N](x: array[T, N]): string = return x.toSeq.join(\" \")\n    proc `fmtprint`*[T](x: HeapQueue[T]): string =\n        var q = x\n        while q.len != 0:\n            result &= &\"{q.pop()}\"\n            if q.len != 0: result &= \" \"\n    proc `fmtprint`*[T](x: CountTable[T]): string =\n        result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n    proc `fmtprint`*[K, V](x: Table[K, V]): string =\n        result = x.pairs.toSeq.mapIt(&\"{it[0]}: {it[1]}\").join(\" \")\n    proc print*(prop: tuple[f: File, sepc: string, endc: string, flush: bool], args: varargs[string, `fmtprint`]) =\n        for i in 0..<len(args):\n            prop.f.write(&\"{args[i]}\")\n            if i != len(args) - 1: prop.f.write(prop.sepc) else: prop.f.write(prop.endc)\n        if prop.flush: prop.f.flushFile()\n    proc print*(args: varargs[string, `fmtprint`]) = print((f: stdout, sepc: \" \", endc: \"\\n\", flush: false), args)\n    const LOCAL_DEBUG{.booldefine.} = false\n    macro getSymbolName(x: typed): string = x.toStrLit\n    macro debug*(args: varargs[untyped]): untyped =\n        when LOCAL_DEBUG:\n            result = newNimNode(nnkStmtList, args)\n            template prop(e: string = \"\"): untyped = (f: stderr, sepc: \"\", endc: e, flush: true)\n            for i, arg in args:\n                if arg.kind == nnkStrLit:\n                    result.add(quote do: print(prop(), \"\\\"\", `arg`, \"\\\"\"))\n                else:\n                    result.add(quote do: print(prop(\": \"), getSymbolName(`arg`)))\n                    result.add(quote do: print(prop(), `arg`))\n                if i != args.len - 1: result.add(quote do: print(prop(), \", \"))\n                else: result.add(quote do: print(prop(), \"\\n\"))\n        else:\n            return (quote do: discard)\n    proc `%`*(x: SomeInteger, y: SomeInteger): int =\n        result = x mod y\n        if y > 0 and result < 0: result += y\n        if y < 0 and result > 0: result += y\n    proc `//`*(x: SomeInteger, y: SomeInteger): int =\n        result = x div y\n        if y > 0 and result * y > x: result -= 1\n        if y < 0 and result * y < x: result -= 1\n    proc `^`*(x: SomeInteger, y: SomeInteger): int = x xor y\n    proc `&`*(x: SomeInteger, y: SomeInteger): int = x and y\n    proc `|`*(x: SomeInteger, y: SomeInteger): int = x or y\n    proc `>>`*(x: SomeInteger, y: SomeInteger): int = x shr y\n    proc `<<`*(x: SomeInteger, y: SomeInteger): int = x shl y\n    proc `%=`*(x: var SomeInteger, y: SomeInteger): void = x = x % y\n    proc `//=`*(x: var SomeInteger, y: SomeInteger): void = x = x // y\n    proc `^=`*(x: var SomeInteger, y: SomeInteger): void = x = x ^ y\n    proc `&=`*(x: var SomeInteger, y: SomeInteger): void = x = x & y\n    proc `|=`*(x: var SomeInteger, y: SomeInteger): void = x = x | y\n    proc `>>=`*(x: var SomeInteger, y: SomeInteger): void = x = x >> y\n    proc `<<=`*(x: var SomeInteger, y: SomeInteger): void = x = x << y\n    proc `[]`*(x, n: int): bool = (x and (1 shl n)) != 0\n    proc `[]=`*(x: var int, n: int, i: bool) =\n        if i: x = x or (1 << n)\n        else: (if x[n]: x = x xor (1 << n))\n    proc pow*(a, n: int, m = INF64): int =\n        var\n            rev = 1\n            a = a\n            n = n\n        while n > 0:\n            if n % 2 != 0: rev = (rev * a) mod m\n            if n > 1: a = (a * a) mod m\n            n >>= 1\n        return rev\n    when not declared CPLIB_MATH_ISQRT:\n        const CPLIB_MATH_ISQRT* = 1\n        proc isqrt*(n: int): int =\n            var x = n\n            var y = (x + 1) shr 1\n            while y < x:\n                x = y\n                y = (x + n div x) shr 1\n            return x\n    \n    proc chmax*[T](x: var T, y: T): bool {.discardable.} = (if x < y: (x = y; return true; ) return false)\n    proc chmin*[T](x: var T, y: T): bool {.discardable.} = (if x > y: (x = y; return true; ) return false)\n    proc `max=`*[T](x: var T, y: T) = x = max(x, y)\n    proc `min=`*[T](x: var T, y: T) = x = min(x, y)\n    proc at*(x: char, a = '0'): int = int(x) - int(a)\n    proc Yes*(b: bool = true): void = print(if b: \"Yes\" else: \"No\")\n    proc No*(b: bool = true): void = Yes(not b)\n    proc YES_upper*(b: bool = true): void = print(if b: \"YES\" else: \"NO\")\n    proc NO_upper*(b: bool = true): void = Yes_upper(not b)\n    const DXY* = [(0, -1), (0, 1), (-1, 0), (1, 0)]\n    const DDXY* = [(1, -1), (1, 0), (1, 1), (0, -1), (0, 1), (-1, -1), (-1, 0), (-1, 1)]\n    macro exit*(statement: untyped): untyped = (quote do: (`statement`; quit()))\n    proc initHashSet[T](): Hashset[T] = initHashSet[T](0)\n"
# source: https://github.com/kemuniku/cplib/tree/main/src/cplib/graph/graph.nim
ImportExpand "cplib/graph/graph" <=== "when not declared CPLIB_GRAPH_GRAPH:\n    const CPLIB_GRAPH_GRAPH* = 1\n\n    import sequtils\n    import math\n    type DynamicGraph*[T] = ref object of RootObj\n        edges*: seq[seq[(int32, T)]]\n        len*: int\n    type StaticGraph*[T] = ref object of RootObj\n        src*, dst*: seq[int32]\n        cost*: seq[T]\n        elist*: seq[(int32, T)]\n        start*: seq[int32]\n        len*: int\n\n    type WeightedDirectedGraph*[T] = ref object of DynamicGraph[T]\n    type WeightedUnDirectedGraph*[T] = ref object of DynamicGraph[T]\n    type UnWeightedDirectedGraph* = ref object of DynamicGraph[int]\n    type UnWeightedUnDirectedGraph* = ref object of DynamicGraph[int]\n    type WeightedDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n    type WeightedUnDirectedStaticGraph*[T] = ref object of StaticGraph[T]\n    type UnWeightedDirectedStaticGraph* = ref object of StaticGraph[int]\n    type UnWeightedUnDirectedStaticGraph* = ref object of StaticGraph[int]\n\n    type GraphTypes*[T] = DynamicGraph[T] or StaticGraph[T]\n    type DirectedGraph* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph\n    type UnDirectedGraph* = WeightedUnDirectedGraph or UnWeightedUnDirectedGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n    type WeightedGraph*[T] = WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T] or WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T]\n    type UnWeightedGraph* = UnWeightedDirectedGraph or UnWeightedUnDirectedGraph or UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n    type DynamicGraphTypes* = WeightedDirectedGraph or UnWeightedDirectedGraph or WeightedUnDirectedGraph or UnWeightedUnDirectedGraph\n    type StaticGraphTypes* = WeightedDirectedStaticGraph or UnWeightedDirectedStaticGraph or WeightedUnDirectedStaticGraph or UnWeightedUnDirectedStaticGraph\n\n    proc add_edge_dynamic_impl*[T](g: DynamicGraph[T], u, v: int, cost: T, directed: bool) =\n        g.edges[u].add((v.int32, cost))\n        if not directed: g.edges[v].add((u.int32, cost))\n\n    proc initWeightedDirectedGraph*(N: int, edgetype: typedesc = int): WeightedDirectedGraph[edgetype] =\n        result = WeightedDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n    proc add_edge*[T](g: var WeightedDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_dynamic_impl(u, v, cost, true)\n\n    proc initWeightedUnDirectedGraph*(N: int, edgetype: typedesc = int): WeightedUnDirectedGraph[edgetype] =\n        result = WeightedUnDirectedGraph[edgetype](edges: newSeq[seq[(int32, edgetype)]](N), len: N)\n    proc add_edge*[T](g: var WeightedUnDirectedGraph[T], u, v: int, cost: T) =\n        g.add_edge_dynamic_impl(u, v, cost, false)\n\n    proc initUnWeightedDirectedGraph*(N: int): UnWeightedDirectedGraph =\n        result = UnWeightedDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n    proc add_edge*(g: var UnWeightedDirectedGraph, u, v: int) =\n        g.add_edge_dynamic_impl(u, v, 1, true)\n\n    proc initUnWeightedUnDirectedGraph*(N: int): UnWeightedUnDirectedGraph =\n        result = UnWeightedUnDirectedGraph(edges: newSeq[seq[(int32, int)]](N), len: N)\n    proc add_edge*(g: var UnWeightedUnDirectedGraph, u, v: int) =\n        g.add_edge_dynamic_impl(u, v, 1, false)\n\n    proc len*[T](G: WeightedGraph[T]): int = G.len\n    proc len*(G: UnWeightedGraph): int = G.len\n\n    iterator `[]`*[T](g: WeightedDirectedGraph[T] or WeightedUnDirectedGraph[T], x: int): (int, T) =\n        for e in g.edges[x]: yield (e[0].int, e[1])\n    iterator `[]`*(g: UnWeightedDirectedGraph or UnWeightedUnDirectedGraph, x: int): int =\n        for e in g.edges[x]: yield e[0].int\n\n    proc add_edge_static_impl*[T](g: StaticGraph[T], u, v: int, cost: T, directed: bool) =\n        g.src.add(u.int32)\n        g.dst.add(v.int32)\n        g.cost.add(cost)\n        if not directed:\n            g.src.add(v.int32)\n            g.dst.add(u.int32)\n            g.cost.add(cost)\n\n    proc build_impl*[T](g: StaticGraph[T]) =\n        g.start = newSeqWith(g.len + 1, 0.int32)\n        for i in 0..<g.src.len:\n            g.start[g.src[i]] += 1\n        g.start.cumsum\n        g.elist = newSeq[(int32, T)](g.start[^1])\n        for i in countdown(g.src.len - 1, 0):\n            var u = g.src[i]\n            var v = g.dst[i]\n            g.start[u] -= 1\n            g.elist[g.start[u]] = (v, g.cost[i])\n    proc build*(g: StaticGraphTypes) = g.build_impl()\n\n    proc initWeightedDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedDirectedStaticGraph[edgetype] =\n        result = WeightedDirectedStaticGraph[edgetype](\n            src: newSeqOfCap[int32](capacity),\n            dst: newSeqOfCap[int32](capacity),\n            cost: newSeqOfCap[edgetype](capacity),\n            elist: newSeq[(int32, edgetype)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*[T](g: var WeightedDirectedStaticGraph[T], u, v: int, cost: T) =\n        g.add_edge_static_impl(u, v, cost, true)\n\n    proc initWeightedUnDirectedStaticGraph*(N: int, edgetype: typedesc = int, capacity: int = 0): WeightedUnDirectedStaticGraph[edgetype] =\n        result = WeightedUnDirectedStaticGraph[edgetype](\n            src: newSeqOfCap[int32](capacity*2),\n            dst: newSeqOfCap[int32](capacity*2),\n            cost: newSeqOfCap[edgetype](capacity*2),\n            elist: newSeq[(int32, edgetype)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*[T](g: var WeightedUnDirectedStaticGraph[T], u, v: int, cost: T) =\n        g.add_edge_static_impl(u, v, cost, false)\n\n    proc initUnWeightedDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedDirectedStaticGraph =\n        result = UnWeightedDirectedStaticGraph(\n            src: newSeqOfCap[int32](capacity),\n            dst: newSeqOfCap[int32](capacity),\n            cost: newSeqOfCap[int](capacity),\n            elist: newSeq[(int32, int)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*(g: var UnWeightedDirectedStaticGraph, u, v: int) =\n        g.add_edge_static_impl(u, v, 1, true)\n\n    proc initUnWeightedUnDirectedStaticGraph*(N: int, capacity: int = 0): UnWeightedUnDirectedStaticGraph =\n        result = UnWeightedUnDirectedStaticGraph(\n            src: newSeqOfCap[int32](capacity*2),\n            dst: newSeqOfCap[int32](capacity*2),\n            cost: newSeqOfCap[int](capacity*2),\n            elist: newSeq[(int32, int)](0),\n            start: newSeq[int32](0),\n            len: N\n        )\n    proc add_edge*(g: var UnWeightedUnDirectedStaticGraph, u, v: int) =\n        g.add_edge_static_impl(u, v, 1, false)\n\n    proc static_graph_initialized_check*[T](g: StaticGraph[T]) = assert g.start.len > 0, \"Static Graph must be initialized before use.\"\n\n    iterator `[]`*[T](g: WeightedDirectedStaticGraph[T] or WeightedUnDirectedStaticGraph[T], x: int): (int, T) =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n    iterator `[]`*(g: UnWeightedDirectedStaticGraph or UnWeightedUnDirectedStaticGraph, x: int): int =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield g.elist[i][0].int\n\n    iterator to_and_cost*[T](g: DynamicGraph[T], x: int): (int, T) =\n        for e in g.edges[x]: yield (e[0].int, e[1])\n    iterator to_and_cost*[T](g: StaticGraph[T], x: int): (int, T) =\n        g.static_graph_initialized_check()\n        for i in g.start[x]..<g.start[x+1]: yield (g.elist[i][0].int, g.elist[i][1])\n    \n    import tables\n\n    type UnWeightedUnDirectedTableGraph*[T] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : UnWeightedUnDirectedGraph\n\n    type UnWeightedDirectedTableGraph*[T] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : UnWeightedDirectedGraph\n\n    type WeightedUnDirectedTableGraph*[T,S] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : WeightedUnDirectedGraph[S]\n\n    type WeightedDirectedTableGraph*[T,S] = object \n        toi* : Table[T,int]\n        v* : seq[T]\n        graph* : WeightedDirectedGraph[S]\n\n    type UnWeightedTableGraph*[T] = UnWeightedUnDirectedTableGraph[T] or UnWeightedDirectedTableGraph[T]\n    type WeightedTableGraph*[T,S] = WeightedUnDirectedTableGraph[T,S] or WeightedDirectedTableGraph[T,S]\n\n    proc initUnWeightedUnDirectedTableGraph*[T](V:seq[T]):UnWeightedUnDirectedTableGraph[T]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initUnWeightedUnDirectedGraph(len(V))\n        result.v = V\n\n    proc initUnWeightedDirectedTableGraph*[T](V:seq[T]):UnWeightedDirectedTableGraph[T]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initUnWeightedDirectedGraph(len(V))\n        result.v = V\n\n    proc initWeightedUnDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedUnDirectedTableGraph[T,S]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initWeightedUnDirectedGraph(len(V),S)\n        result.v = V\n\n    proc initWeightedDirectedTableGraph*[T](V:seq[T],S:typedesc = int):WeightedDirectedTableGraph[T,S]=\n        for i in 0..<len(V):\n            result.toi[V[i]] = i\n        result.graph = initWeightedDirectedGraph(len(V),S)\n        result.v = V\n\n    proc add_edge*[T](g: var UnWeightedTableGraph[T],u,v:int)=\n        g.graph.add_edge(g.toi[u],g.toi[v])\n\n    proc add_edge*[T,S](g: var WeightedTableGraph[T,S],u,v:int,cost:S)=\n        g.graph.add_edge(g.toi[u],g.toi[v],cost)\n\n    iterator `[]`*[T,S](g: WeightedDirectedTableGraph[T,S] or WeightedUnDirectedTableGraph[T,S], x: T): (T, S) = \n        for (x,y) in g.graph[g.toi[x]]:\n            yield (g.v[x],y)\n    iterator `[]`*[T](g: UnWeightedDirectedTableGraph[T] or UnWeightedUnDirectedTableGraph[T], x: T): T = \n        for x in g.graph[g.toi[x]]:\n            yield g.v[x]\n\n"
# source: https://github.com/zer0-star/Nim-ACL/tree/master/src/atcoder/fenwicktree.nim
ImportExpand "atcoder/fenwicktree" <=== "when not declared ATCODER_FENWICKTREE_HPP:\n  const ATCODER_FENWICKTREE_HPP* = 1\n\n  import std/sequtils\n  when not declared ATCODER_INTERNAL_TYPE_TRAITS_HPP:\n    const ATCODER_INTERNAL_TYPE_TRAITS_HPP* = 1\n  \n    #template <class T>\n    #using is_signed_int128 =\n    #    typename std::conditional<std::is_same<T, __int128_t>::value ||\n    #                                  std::is_same<T, __int128>::value,\n    #                              std::true_type,\n    #                              std::false_type>::type;\n    #\n    #template <class T>\n    #using is_unsigned_int128 =\n    #    typename std::conditional<std::is_same<T, __uint128_t>::value ||\n    #                                  std::is_same<T, unsigned __int128>::value,\n    #                              std::true_type,\n    #                              std::false_type>::type;\n    #\n    #template <class T>\n    #using make_unsigned_int128 =\n    #    typename std::conditional<std::is_same<T, __int128_t>::value,\n    #                              __uint128_t,\n    #                              unsigned __int128>;\n    #\n    #template <class T>\n    #using is_integral = typename std::conditional<std::is_integral<T>::value ||\n    #                                                  is_signed_int128<T>::value ||\n    #                                                  is_unsigned_int128<T>::value,\n    #                                              std::true_type,\n    #                                              std::false_type>::type;\n    #\n    #template <class T>\n    #using is_signed_int = typename std::conditional<(is_integral<T>::value &&\n    #                                                 std::is_signed<T>::value) ||\n    #                                                    is_signed_int128<T>::value,\n    #                                                std::true_type,\n    #                                                std::false_type>::type;\n    #\n    #template <class T>\n    #using is_unsigned_int =\n    #    typename std::conditional<(is_integral<T>::value &&\n    #                               std::is_unsigned<T>::value) ||\n    #                                  is_unsigned_int128<T>::value,\n    #                              std::true_type,\n    #                              std::false_type>::type;\n    #\n    #template <class T>\n    #using to_unsigned = typename std::conditional<\n    #    is_signed_int128<T>::value,\n    #    make_unsigned_int128<T>,\n    #    typename std::conditional<std::is_signed<T>::value,\n    #                              std::make_unsigned<T>,\n    #                              std::common_type<T>>::type>::type;\n    #\n    \n    #  template <class T> using is_integral = typename std::is_integral<T>;\n      \n    #  template <class T>\n    #  using is_signed_int =\n    #      typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,\n    #                                std::true_type,\n    #                                std::false_type>::type;\n    #  \n    #  template <class T>\n    #  using is_unsigned_int =\n    #      typename std::conditional<is_integral<T>::value &&\n    #                                    std::is_unsigned<T>::value,\n    #                                std::true_type,\n    #                                std::false_type>::type;\n    #  \n    #  template <class T>\n    #  using to_unsigned = typename std::conditional<is_signed_int<T>::value,\n    #                                                std::make_unsigned<T>,\n    #                                                std::common_type<T>>::type;\n    \n    template to_unsigned*(T:typedesc):typedesc =\n      when T is int: uint\n      elif T is int8: uint8\n      elif T is int16: uint16\n      elif T is int32: uint32\n      elif T is int64: uint64\n      else: T\n      \n  #endif\n  \n  #template <class T>\n  #using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;\n  #\n  #template <class T>\n  #using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;\n  #\n  #template <class T> using to_unsigned_t = typename to_unsigned<T>::type;\n  \n    template to_unsigned_t*(T):typed = to_unsigned(T)\n  \n  #\n  #}  // namespace internal\n  #\n  #}  // namespace atcoder\n  \n  #endif  // ATCODER_INTERNAL_TYPE_TRAITS_HPP\n  \n  when not declared ATCODER_RANGEUTILS_HPP:\n    const ATCODER_RANGEUTILS_HPP* = 1\n    type RangeType* = Slice[int] | HSlice[int, BackwardsIndex] | Slice[BackwardsIndex]\n    type IndexType* = int | BackwardsIndex\n    template halfOpenEndpoints*(p:Slice[int]):(int,int) = (p.a, p.b + 1)\n    template `^^`*(s, i: untyped): untyped =\n      (when i is BackwardsIndex: s.len - int(i) else: int(i))\n    template halfOpenEndpoints*[T](s:T, p:RangeType):(int,int) =\n      (s^^p.a, s^^p.b + 1)\n  \n\n  # Reference: https://en.wikipedia.org/wiki/Fenwick_tree\n  type FenwickTree*[T, U] = object\n    len*:int\n    data*:seq[U]\n\n  proc init*(self:typedesc[FenwickTree], n:int):auto =\n    return self(len:n, data:newSeqWith(n, self.U(0)))\n  proc init*(self:var FenwickTree, n:int) =\n    if self.data.len < n: self.data.setLen(n)\n    self.data.fill(0, n - 1, self.U(0))\n    self.len = n\n\n  template FenwickTreeType*(T:typedesc):typedesc[FenwickTree] =\n    type U = to_unsigned(T)\n    typedesc[FenwickTree[T, U]]\n  template getType*(FT:typedesc[FenwickTree], T:typedesc):typedesc[FenwickTree] =\n    FenwickTreeType(T)\n  proc initFenwickTree*[T](n:int):auto = FenwickTreeType(T).init(n)\n\n  proc add*[FT:FenwickTree](self: var FT, p:IndexType, x:FT.T) =\n    var p = self^^p\n    assert p in 0..<self.len\n    p.inc\n    while p <= self.len:\n      self.data[p - 1] += FT.U(x)\n      p += p and -p\n  proc sum[FT:FenwickTree](self: FT, r:int):auto =\n    result = FT.U(0)\n    var r = r\n    while r > 0:\n      result += self.data[r - 1]\n      r -= r and -r\n  proc sum*[FT:FenwickTree](self: FT, p:RangeType):FT.T =\n    let (l, r) = self.halfOpenEndpoints(p)\n    assert 0 <= l and l <= r and r <= self.len\n    return cast[FT.T](self.sum(r) - self.sum(l))\n  proc `[]`*[FT:FenwickTree](self: FT, p:RangeType):FT.T = self.sum(p)\n"

# {.checks: off.}

var n = input(int)
var g = initUnWeightedUnDirectedStaticGraph(n)
for i in 0..<n-1:
    var u, v = input(int) - 1
    g.add_edge(u, v)
g.build
var s = input(string)
var a = (0..<n).toSeq.mapIt(if s[it] == '1': 1 else: -1)

var sz = newSeqWith(n, 1)
var heavy_child = newSeqWith(n, -1)
proc calc_sz(u, p: int): int =
    for v in g[u]:
        if v == p: continue
        sz[u] += calc_sz(v, u)
    var mx = -1
    for v in g[u]:
        if v == p: continue
        if chmax(mx, sz[v]):
            heavy_child[u] = v
    return sz[u]
discard calc_sz(0, -1)

var fw = initFenwickTree[int](2*n+1)
var ans = 0

proc add(u, p, val: int) =
    fw.add(n+val+a[u], 1)
    for v in g[u]:
        if v == p: continue
        add(v, u, val+a[u])
proc calc(u, p, val, base, au: int) =
    var q = 2 * base - (val + a[u])
    if au == -1: q += 2
    ans += fw.sum(min(2*n+1, n+q)..<2*n+1)
    for v in g[u]:
        if v == p: continue
        calc(v, u, val+a[u], base, au)
proc reset(u, p, val: int) =
    fw.add(n+val+a[u], -1)
    for v in g[u]:
        if v == p: continue
        reset(v, u, val+a[u])
proc dfs(u, p: int, keep: bool, val: int) =
    for v in g[u]:
        if v == p or v == heavy_child[u]: continue
        dfs(v, u, false, val+a[u])
    if heavy_child[u] != -1:
        dfs(heavy_child[u], u, true, val+a[u])
    for v in g[u]:
        if v == p or v == heavy_child[u]: continue
        calc(v, u, val+a[u], val+a[u], a[u])
        add(v, u, val+a[u])
    fw.add(n+val+a[u], 1)
    ans += fw.sum(n+val+1..<2*n+1)
    if not keep:
        reset(u, p, val)
dfs(0, -1, true, 0)
print(ans)
0