結果

問題 No.3055 Simple Chicken Game
ユーザー 👑 rin204
提出日時 2025-02-02 18:05:08
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,986 ms / 2,000 ms
コード長 27,762 bytes
コンパイル時間 4,751 ms
コンパイル使用メモリ 312,252 KB
実行使用メモリ 496,128 KB
最終ジャッジ日時 2025-02-05 00:30:43
合計ジャッジ時間 17,297 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #define INTERACTIVE

#include <bits/stdc++.h>
using namespace std;

namespace templates {
// type
using ll  = long long;
using ull = unsigned long long;
using Pii = pair<int, int>;
using Pil = pair<int, ll>;
using Pli = pair<ll, int>;
using Pll = pair<ll, ll>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
// clang-format off
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
// clang-format on

// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on

// const value
const ll MOD1   = 1000000007;
const ll MOD9   = 998244353;
const double PI = acos(-1);

// other macro
#if !defined(RIN__LOCAL) && !defined(INTERACTIVE)
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)

// function
vector<char> stoc(string &S) {
    int n = S.size();
    vector<char> ret(n);
    for (int i = 0; i < n; i++) ret[i] = S[i];
    return ret;
}
string ctos(vector<char> &S) {
    int n      = S.size();
    string ret = "";
    for (int i = 0; i < n; i++) ret += S[i];
    return ret;
}

template <class T>
auto min(const T &a) {
    return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
    return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
    return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
    auto b = clamp(a, l, r);
    return (a != b ? a = b, 1 : 0);
}

template <typename T>
T sum(vector<T> &A) {
    T tot = 0;
    for (auto a : A) tot += a;
    return tot;
}

template <typename T>
vector<T> compression(vector<T> X) {
    sort(all(X));
    X.erase(unique(all(X)), X.end());
    return X;
}

// input and output
namespace io {
// __int128_t
std::istream &operator>>(std::istream &is, __int128_t &value) {
    std::string str;
    is >> str;
    value    = 0;
    int sign = 1;
    for (size_t i = 0; i < str.size(); i++) {
        if (i == 0 && str[i] == '-') {
            sign = -1;
            continue;
        }
        value = value * 10 + str[i] - '0';
    }
    value *= sign;
    return is;
}

std::ostream &operator<<(std::ostream &dest, __int128_t value) {
    std::ostream::sentry s(dest);
    if (s) {
        __uint128_t tmp = value < 0 ? -value : value;
        char buffer[128];
        char *d = std::end(buffer);
        do {
            --d;
            *d = "0123456789"[tmp % 10];
            tmp /= 10;
        } while (tmp != 0);
        if (value < 0) {
            --d;
            *d = '-';
        }
        int len = std::end(buffer) - d;
        if (dest.rdbuf()->sputn(d, len) != len) {
            dest.setstate(std::ios_base::badbit);
        }
    }
    return dest;
}

// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << ' ';
    }
    return os;
}

// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
    is >> A.first >> A.second;
    return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
    os << A.first << ' ' << A.second;
    return os;
}

// vector<pair<S, T>>
template <typename S, typename T>
istream &operator>>(istream &is, vector<pair<S, T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        is >> A[i];
    }
    return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// tuple
template <typename T, size_t N>
struct TuplePrint {
    static ostream &print(ostream &os, const T &t) {
        TuplePrint<T, N - 1>::print(os, t);
        os << ' ' << get<N - 1>(t);
        return os;
    }
};
template <typename T>
struct TuplePrint<T, 1> {
    static ostream &print(ostream &os, const T &t) {
        os << get<0>(t);
        return os;
    }
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
    TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
    return os;
}

// io functions
void FLUSH() {
    cout << flush;
}

void print() {
    cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(std::forward<Tail>(tail)...);
}

template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << sep;
    }
    cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
    cout << A << end;
}
template <typename T>
void prispa(T A) {
    priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
    if (f)
        print(A);
    else
        print(B);
    return f;
}

template <class... T>
void inp(T &...a) {
    (cin >> ... >> a);
}

} // namespace io
using namespace io;

// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<int>> edges(n, vector<int>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        u -= indexed;
        v -= indexed;
        edges[u].push_back(v);
        if (!direct) edges[v].push_back(u);
    }
    return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
    return read_edges(n, n - 1, false, indexed);
}

template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        T w;
        inp(w);
        u -= indexed;
        v -= indexed;
        edges[u].push_back({v, w});
        if (!direct) edges[v].push_back({u, w});
    }
    return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
    return read_wedges<T>(n, n - 1, false, indexed);
}

// yes / no
namespace yesno {

// yes
inline bool yes(bool f = true) {
    cout << (f ? "yes" : "no") << endl;
    return f;
}
inline bool Yes(bool f = true) {
    cout << (f ? "Yes" : "No") << endl;
    return f;
}
inline bool YES(bool f = true) {
    cout << (f ? "YES" : "NO") << endl;
    return f;
}

// no
inline bool no(bool f = true) {
    cout << (!f ? "yes" : "no") << endl;
    return f;
}
inline bool No(bool f = true) {
    cout << (!f ? "Yes" : "No") << endl;
    return f;
}
inline bool NO(bool f = true) {
    cout << (!f ? "YES" : "NO") << endl;
    return f;
}

// possible
inline bool possible(bool f = true) {
    cout << (f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Possible(bool f = true) {
    cout << (f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool POSSIBLE(bool f = true) {
    cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// impossible
inline bool impossible(bool f = true) {
    cout << (!f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Impossible(bool f = true) {
    cout << (!f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool IMPOSSIBLE(bool f = true) {
    cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// Alice Bob
inline bool Alice(bool f = true) {
    cout << (f ? "Alice" : "Bob") << endl;
    return f;
}
inline bool Bob(bool f = true) {
    cout << (f ? "Bob" : "Alice") << endl;
    return f;
}

// Takahashi Aoki
inline bool Takahashi(bool f = true) {
    cout << (f ? "Takahashi" : "Aoki") << endl;
    return f;
}
inline bool Aoki(bool f = true) {
    cout << (f ? "Aoki" : "Takahashi") << endl;
    return f;
}

} // namespace yesno
using namespace yesno;

} // namespace templates
using namespace templates;

template <int MOD>
struct Modint {
    int x;
    Modint() : x(0) {}
    Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Modint &operator+=(const Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Modint &operator-=(const Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Modint &operator*=(const Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Modint &operator/=(const Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Modint &operator%=(const Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Modint operator-() const {
        return Modint(-x);
    }

    Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Modint operator++(int) {
        Modint result = *this;
        ++*this;
        return result;
    }

    Modint operator--(int) {
        Modint result = *this;
        --*this;
        return result;
    }

    friend Modint operator+(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) += rhs;
    }

    friend Modint operator-(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) -= rhs;
    }

    friend Modint operator*(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) *= rhs;
    }

    friend Modint operator/(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) /= rhs;
    }

    friend Modint operator%(const Modint &lhs, const Modint &rhs) {
        assert(rhs.x == 0);
        return Modint(lhs);
    }

    bool operator==(const Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Modint &rhs) const {
        return x < rhs.x;
    }

    bool operator<=(const Modint &rhs) const {
        return x <= rhs.x;
    }

    bool operator>(const Modint &rhs) const {
        return x > rhs.x;
    }

    bool operator>=(const Modint &rhs) const {
        return x >= rhs.x;
    }

    Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            std::swap(a, b);
            std::swap(u, v);
        }
        return Modint(u);
    }

    Modint pow(int64_t k) const {
        Modint ret(1);
        Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    std::pair<int, int> to_frac(int max_n = 1000) const {
        int y = x;
        for (int i = 1; i <= max_n; i++) {
            if (y <= max_n) {
                return {y, i};
            } else if (MOD - y <= max_n) {
                return {-(MOD - y), i};
            }
            y = (y + x) % MOD;
        }
        return {-1, -1};
    }

    friend std::ostream &operator<<(std::ostream &os, const Modint &p) {
        return os << p.x;
    }

    friend std::istream &operator>>(std::istream &is, Modint &p) {
        int64_t y;
        is >> y;
        p = Modint<MOD>(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};

struct Arbitrary_Modint {
    int x;
    static int MOD;

    static void set_mod(int mod) {
        MOD = mod;
    }

    Arbitrary_Modint() : x(0) {}
    Arbitrary_Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Arbitrary_Modint operator-() const {
        return Arbitrary_Modint(-x);
    }

    Arbitrary_Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Arbitrary_Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Arbitrary_Modint operator++(int) {
        Arbitrary_Modint result = *this;
        ++*this;
        return result;
    }

    Arbitrary_Modint operator--(int) {
        Arbitrary_Modint result = *this;
        --*this;
        return result;
    }

    friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) += rhs;
    }

    friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) -= rhs;
    }

    friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) *= rhs;
    }

    friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) /= rhs;
    }

    friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        assert(rhs.x == 0);
        return Arbitrary_Modint(lhs);
    }

    bool operator==(const Arbitrary_Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Arbitrary_Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Arbitrary_Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Arbitrary_Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Arbitrary_Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Arbitrary_Modint &rhs) {
        return x >= rhs.x;
    }

    Arbitrary_Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            std::swap(a, b);
            std::swap(u, v);
        }
        return Arbitrary_Modint(u);
    }

    Arbitrary_Modint pow(int64_t k) const {
        Arbitrary_Modint ret(1);
        Arbitrary_Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    std::pair<int, int> to_frac(int max_n = 1000) const {
        int y = x;
        for (int i = 1; i <= max_n; i++) {
            if (y <= max_n) {
                return {y, i};
            } else if (MOD - y <= max_n) {
                return {-(MOD - y), i};
            }
            y = (y + x) % MOD;
        }
        return {-1, -1};
    }

    friend std::ostream &operator<<(std::ostream &os, const Arbitrary_Modint &p) {
        return os << p.x;
    }

    friend std::istream &operator>>(std::istream &is, Arbitrary_Modint &p) {
        int64_t y;
        is >> y;
        p = Arbitrary_Modint(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};
int Arbitrary_Modint::MOD = 998244353;

using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint  = Arbitrary_Modint;
using mint    = modint;

void solve() {
    INT(n, P);
    mint::set_mod(P);
    using Pd = pair<double, double>;
    using Pm = pair<mint, mint>;
    vvec(Pm, dp2, n + 1, 2 * n + 3, {0, 0});
    vvec(int, to, n + 1, 2 * n + 3, 0);
    int zero = n + 1;
    {
        vvec(Pd, dp, n + 1, 2 * n + 3, {0, 0});
        fori(i, n - 1, -1, -1) {
            fori(j, -i, i + 1) {
                auto score1 = dp[i + 1][zero + j + 1].first * 2 + j / 2.0;
                auto score2 = dp[i + 1][zero + j - 1].first + dp[i + 1][zero + j - 1].second;
                if (abs(score1 - score2) < 1e-9) {
                    dp[i][zero + j].first   = (2.0 * dp[i + 1][zero + j + 1].first + dp[i + 1][zero + j - 1].first + dp[i + 1][zero + j].first + 1) / 4.0;
                    dp[i][zero + j].second  = (2.0 * dp[i + 1][zero + j + 1].second + 2 + dp[i + 1][zero + j - 1].second + dp[i + 1][zero + j].second) / 4.0;
                    dp2[i][zero + j].first  = (2 * dp2[i + 1][zero + j + 1].first + dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 4;
                    dp2[i][zero + j].second = (2 * dp2[i + 1][zero + j + 1].second + 2 + dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 4;
                    to[i][zero + j]         = 0;
                } else if (score1 < score2) {
                    dp[i][zero + j]  = {dp[i + 1][zero + j + 1].first, dp[i + 1][zero + j + 1].second + 1};
                    dp2[i][zero + j] = {dp2[i + 1][zero + j + 1].first, dp2[i + 1][zero + j + 1].second + 1};
                    to[i][zero + j]  = 1;
                } else {
                    dp[i][zero + j]  = {(dp[i + 1][zero + j - 1].first + dp[i + 1][zero + j].first + 1) / 2.0, (dp[i + 1][zero + j - 1].second + dp[i + 1][zero + j].second) / 2.0};
                    dp2[i][zero + j] = {(dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 2, (dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 2};
                    to[i][zero + j]  = 2;
                }
            }
        }
    }
    {
        fori(i, n - 1, -1, -1) {
            fori(j, -i, i + 1) {
                if (to[i][zero + j] == 0) {
                    dp2[i][zero + j].first  = (2 * dp2[i + 1][zero + j + 1].first + dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 4;
                    dp2[i][zero + j].second = (2 * dp2[i + 1][zero + j + 1].second + 2 + dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 4;
                } else if (to[i][zero + j] == 1) {
                    dp2[i][zero + j] = {dp2[i + 1][zero + j + 1].first, dp2[i + 1][zero + j + 1].second + 1};
                } else {
                    dp2[i][zero + j] = {(dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 2, (dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 2};
                }
            }
        }
    }

    vec(bool, ok, 2 * n + 3, false);
    ok[zero] = true;
    vvec(mint, prob, n + 1, 2 * n + 3, 0);
    prob[0][zero] = 1;
    vec(mint, ans, n, 0);
    vec(int, cnt, 3, 0);
    vec(mint, cum, n + 1, 0);
    fori(i, n) {
        if (i > 0) cum[i] += cum[i - 1];
        vec(bool, nok, 2 * n + 3, false);
        fori(j, -i, i + 1) {
            if (!ok[zero + j]) continue;
            if (to[i][zero + j] == 0) {
                prob[i + 1][zero + j - 1] += prob[i][zero + j] / 4;
                prob[i + 1][zero + j] += prob[i][zero + j] / 4;
                prob[i + 1][zero + j + 1] += prob[i][zero + j] / 2;
                nok[zero + j - 1] = true;
                nok[zero + j]     = true;
                nok[zero + j + 1] = true;
                cum[i + 1] += prob[i][zero + j] / 4;
            } else if (to[i][zero + j] == 1) {
                prob[i + 1][zero + j + 1] += prob[i][zero + j];
                nok[zero + j + 1] = true;
            } else {
                prob[i + 1][zero + j - 1] += prob[i][zero + j] / 2;
                prob[i + 1][zero + j] += prob[i][zero + j] / 2;
                cum[i + 1] += prob[i][zero + j] / 2;
                nok[zero + j - 1] = true;
                nok[zero + j]     = true;
            }

            mint tt = 0;
            if (to[i][zero + j] != 2) {
                tt += cum[i];
                tt += mint(i - cum[i] + j) / 2;
                tt += dp2[i + 1][zero + j + 1].first;
            }
            if (to[i][zero + j] != 1) {
                tt += cum[i];
                tt += mint(i - cum[i]) / 2;
                tt += mint(dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j - 1].second) / 2;
            }
            if (to[i][zero + j] == 0) tt /= 2;
            ans[i] += tt * prob[i][zero + j];
        }
        swap(ok, nok);
    }

    fori(i, n) ans[i]++;
    print(ans);
}

int main() {
#ifndef INTERACTIVE
    std::cin.tie(0)->sync_with_stdio(0);
#endif
    // std::cout << std::fixed << std::setprecision(12);
    int t;
    t = 1;
    // std::cin >> t;
    while (t--) solve();
    return 0;
}

// // #pragma GCC target("avx2")
// // #pragma GCC optimize("O3")
// // #pragma GCC optimize("unroll-loops")
// // #define INTERACTIVE
//
// #include "kyopro-cpp/template.hpp"
//
// #include "misc/Modint.hpp"
// using mint = modint;
//
// void solve() {
//     INT(n, P);
//     mint::set_mod(P);
//     using Pd = pair<double, double>;
//     using Pm = pair<mint, mint>;
//     vvec(Pm, dp2, n + 1, 2 * n + 3, {0, 0});
//     vvec(int, to, n + 1, 2 * n + 3, 0);
//     int zero = n + 1;
//     {
//         vvec(Pd, dp, n + 1, 2 * n + 3, {0, 0});
//         fori(i, n - 1, -1, -1) {
//             fori(j, -i, i + 1) {
//                 auto score1 = dp[i + 1][zero + j + 1].first * 2 + j / 2.0;
//                 auto score2 = dp[i + 1][zero + j - 1].first + dp[i + 1][zero + j - 1].second;
//                 if (abs(score1 - score2) < 1e-9) {
//                     dp[i][zero + j].first   = (2.0 * dp[i + 1][zero + j + 1].first + dp[i + 1][zero + j - 1].first + dp[i + 1][zero + j].first + 1) / 4.0;
//                     dp[i][zero + j].second  = (2.0 * dp[i + 1][zero + j + 1].second + 2 + dp[i + 1][zero + j - 1].second + dp[i + 1][zero + j].second) / 4.0;
//                     dp2[i][zero + j].first  = (2 * dp2[i + 1][zero + j + 1].first + dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 4;
//                     dp2[i][zero + j].second = (2 * dp2[i + 1][zero + j + 1].second + 2 + dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 4;
//                     to[i][zero + j]         = 0;
//                 } else if (score1 < score2) {
//                     dp[i][zero + j]  = {dp[i + 1][zero + j + 1].first, dp[i + 1][zero + j + 1].second + 1};
//                     dp2[i][zero + j] = {dp2[i + 1][zero + j + 1].first, dp2[i + 1][zero + j + 1].second + 1};
//                     to[i][zero + j]  = 1;
//                 } else {
//                     dp[i][zero + j]  = {(dp[i + 1][zero + j - 1].first + dp[i + 1][zero + j].first + 1) / 2.0, (dp[i + 1][zero + j - 1].second + dp[i + 1][zero + j].second) / 2.0};
//                     dp2[i][zero + j] = {(dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 2, (dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 2};
//                     to[i][zero + j]  = 2;
//                 }
//             }
//         }
//     }
//     {
//         fori(i, n - 1, -1, -1) {
//             fori(j, -i, i + 1) {
//                 if (to[i][zero + j] == 0) {
//                     dp2[i][zero + j].first  = (2 * dp2[i + 1][zero + j + 1].first + dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 4;
//                     dp2[i][zero + j].second = (2 * dp2[i + 1][zero + j + 1].second + 2 + dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 4;
//                 } else if (to[i][zero + j] == 1) {
//                     dp2[i][zero + j] = {dp2[i + 1][zero + j + 1].first, dp2[i + 1][zero + j + 1].second + 1};
//                 } else {
//                     dp2[i][zero + j] = {(dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j].first + 1) / 2, (dp2[i + 1][zero + j - 1].second + dp2[i + 1][zero + j].second) / 2};
//                 }
//             }
//         }
//     }
//
//     vec(bool, ok, 2 * n + 3, false);
//     ok[zero] = true;
//     vvec(mint, prob, n + 1, 2 * n + 3, 0);
//     prob[0][zero] = 1;
//     vec(mint, ans, n, 0);
//     vec(int, cnt, 3, 0);
//     vec(mint, cum, n + 1, 0);
//     fori(i, n) {
//         if (i > 0) cum[i] += cum[i - 1];
//         vec(bool, nok, 2 * n + 3, false);
//         fori(j, -i, i + 1) {
//             if (!ok[zero + j]) continue;
//             if (to[i][zero + j] == 0) {
//                 prob[i + 1][zero + j - 1] += prob[i][zero + j] / 4;
//                 prob[i + 1][zero + j] += prob[i][zero + j] / 4;
//                 prob[i + 1][zero + j + 1] += prob[i][zero + j] / 2;
//                 nok[zero + j - 1] = true;
//                 nok[zero + j]     = true;
//                 nok[zero + j + 1] = true;
//                 cum[i + 1] += prob[i][zero + j] / 4;
//             } else if (to[i][zero + j] == 1) {
//                 prob[i + 1][zero + j + 1] += prob[i][zero + j];
//                 nok[zero + j + 1] = true;
//             } else {
//                 prob[i + 1][zero + j - 1] += prob[i][zero + j] / 2;
//                 prob[i + 1][zero + j] += prob[i][zero + j] / 2;
//                 cum[i + 1] += prob[i][zero + j] / 2;
//                 nok[zero + j - 1] = true;
//                 nok[zero + j]     = true;
//             }
//
//             mint tt = 0;
//             if (to[i][zero + j] != 2) {
//                 tt += cum[i];
//                 tt += mint(i - cum[i] + j) / 2;
//                 tt += dp2[i + 1][zero + j + 1].first;
//             }
//             if (to[i][zero + j] != 1) {
//                 tt += cum[i];
//                 tt += mint(i - cum[i]) / 2;
//                 tt += mint(dp2[i + 1][zero + j - 1].first + dp2[i + 1][zero + j - 1].second) / 2;
//             }
//             if (to[i][zero + j] == 0) tt /= 2;
//             ans[i] += tt * prob[i][zero + j];
//         }
//         swap(ok, nok);
//     }
//
//     fori(i, n) ans[i]++;
//     print(ans);
// }
//
// int main() {
// #ifndef INTERACTIVE
//     std::cin.tie(0)->sync_with_stdio(0);
// #endif
//     // std::cout << std::fixed << std::setprecision(12);
//     int t;
//     t = 1;
//     // std::cin >> t;
//     while (t--) solve();
//     return 0;
// }
0