結果

問題 No.2206 Popcount Sum 2
ユーザー kuhaku
提出日時 2025-02-03 16:53:17
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 956 ms / 4,000 ms
コード長 23,650 bytes
コンパイル時間 1,768 ms
コンパイル使用メモリ 132,228 KB
実行使用メモリ 10,920 KB
最終ジャッジ日時 2025-02-03 16:53:35
合計ジャッジ時間 14,679 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 18
権限があれば一括ダウンロードができます

ソースコード

diff #

// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/2206
#include <iostream>
#include <utility>
#include <vector>
#include <algorithm>
#include <cmath>
#include <numeric>
/**
 * @brief Mo's algorithm
 * @see https://ei1333.hateblo.jp/entry/2017/09/11/211011
 * @see https://snuke.hatenablog.com/entry/2016/07/01/000000
 */
struct Mo {
    Mo(int n) : _left(), _right(), _order(), _size(n), _nl(0), _nr(0) {}
    void input(int q, int bias = 1, int closed = 0) {
        for (int i = 0; i < q; ++i) {
            int l, r;
            std::cin >> l >> r;
            add(l - bias, r - bias + closed);
        }
    }
    void add(int l, int r) {
        _left.emplace_back(l);
        _right.emplace_back(r);
    }
    void emplace(int l, int r) { return add(l, r); }
    void insert(int l, int r) { return add(l, r); }
    template <class F, class G, class H>
    void solve(F add, G del, H rem) {
        build();
        for (int idx : _order) {
            while (_nl > _left[idx]) add(--_nl);
            while (_nr < _right[idx]) add(_nr++);
            while (_nl < _left[idx]) del(_nl++);
            while (_nr > _right[idx]) del(--_nr);
            rem(idx);
        }
    }
    template <class F, class G, class H, class I, class K>
    void solve(F addl, G addr, H dell, I delr, K rem) {
        build();
        for (int idx : _order) {
            while (_nl > _left[idx]) addl(--_nl);
            while (_nr < _right[idx]) addr(_nr++);
            while (_nl < _left[idx]) dell(_nl++);
            while (_nr > _right[idx]) delr(--_nr);
            rem(idx);
        }
    }
  private:
    std::vector<int> _left, _right, _order;
    int _size, _nl, _nr;
    void build() {
        int q = _left.size();
        int width = std::max(1, int(_size / std::sqrt(q)));
        _order.resize(q);
        std::iota(_order.begin(), _order.end(), 0);
        std::sort(_order.begin(), _order.end(), [&](int a, int b) -> bool {
            if (_left[a] / width != _left[b] / width) return _left[a] < _left[b];
            return (_left[a] / width % 2 == 0) ? (_right[a] < _right[b]) : (_right[b] < _right[a]);
        });
    }
};
#include <cassert>
#include <cstdint>
#include <type_traits>
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    std::uint64_t im;
    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {}
    // @return m
    unsigned int umod() const { return _m; }
    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        std::uint64_t z = a;
        z *= b;
        std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64);
        std::uint64_t y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};
struct montgomery {
    std::uint64_t _m;
    std::uint64_t im;
    std::uint64_t r2;
    // @param m `1 <= m`
    explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) {
        for (int i = 0; i < 5; ++i) im = im * (2 - _m * im);
        im = -im;
    }
    // @return m
    constexpr std::uint64_t umod() const { return _m; }
    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); }
    constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const {
        std::uint64_t res = 1, p = mr(a, r2);
        while (b) {
            if (b & 1) res = mr(res, p);
            p = mr(p, p);
            b >>= 1;
        }
        return res;
    }
    constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const {
        x = mr(x, r2), n = mr(n, r2);
        for (int r = 0; r < s; r++) {
            if (x == n) return true;
            x = mr(x, x);
        }
        return false;
    }
  private:
    constexpr std::uint64_t mr(std::uint64_t x) const {
        return ((__uint128_t)(x * im) * _m + x) >> 64;
    }
    constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const {
        __uint128_t t = (__uint128_t)a * b;
        std::uint64_t inc = std::uint64_t(t) != 0;
        std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64;
        unsigned long long z = 0;
        bool f = __builtin_uaddll_overflow(x, y, &z);
        z += inc;
        return f ? z - _m : z;
    }
};
constexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) {
    std::uint32_t d = n - 1, s = 0;
    while ((d & 1) == 0) ++s, d >>= 1;
    std::uint64_t cur = 1, pw = d;
    while (pw) {
        if (pw & 1) cur = (cur * a) % n;
        a = (std::uint64_t)a * a % n;
        pw >>= 1;
    }
    if (cur == 1) return true;
    for (std::uint32_t r = 0; r < s; r++) {
        if (cur == n - 1) return true;
        cur = cur * cur % n;
    }
    return false;
}
// given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP
constexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) {
    auto n = m.umod();
    if (n == a) return true;
    if (n % a == 0) return false;
    std::uint64_t d = n - 1;
    int s = 0;
    while ((d & 1) == 0) ++s, d >>= 1;
    std::uint64_t cur = m.exp(a, d);
    if (cur == 1) return true;
    return m.same_pow(cur, s, n - 1);
}
constexpr bool is_prime_constexpr(std::uint64_t x) {
    if (x == 2 || x == 3 || x == 5 || x == 7) return true;
    if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;
    if (x < 121) return (x > 1);
    montgomery m(x);
    constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
    for (auto a : bases) {
        if (!is_SPRP64(m, a)) return false;
    }
    return true;
}
constexpr bool is_prime_constexpr(std::int64_t x) {
    if (x < 0) return false;
    return is_prime_constexpr(std::uint64_t(x));
}
constexpr bool is_prime_constexpr(std::uint32_t x) {
    if (x == 2 || x == 3 || x == 5 || x == 7) return true;
    if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false;
    if (x < 121) return (x > 1);
    std::uint64_t h = x;
    h = ((h >> 16) ^ h) * 0x45d9f3b;
    h = ((h >> 16) ^ h) * 0x45d9f3b;
    h = ((h >> 16) ^ h) & 255;
    constexpr uint16_t bases[] = {
        15591, 2018,  166,   7429,  8064,  16045, 10503, 4399,  1949,  1295,  2776,  3620,  560,
        3128,  5212,  2657,  2300,  2021,  4652,  1471,  9336,  4018,  2398,  20462, 10277, 8028,
        2213,  6219,  620,   3763,  4852,  5012,  3185,  1333,  6227,  5298,  1074,  2391,  5113,
        7061,  803,   1269,  3875,  422,   751,   580,   4729,  10239, 746,   2951,  556,   2206,
        3778,  481,   1522,  3476,  481,   2487,  3266,  5633,  488,   3373,  6441,  3344,  17,
        15105, 1490,  4154,  2036,  1882,  1813,  467,   3307,  14042, 6371,  658,   1005,  903,
        737,   1887,  7447,  1888,  2848,  1784,  7559,  3400,  951,   13969, 4304,  177,   41,
        19875, 3110,  13221, 8726,  571,   7043,  6943,  1199,  352,   6435,  165,   1169,  3315,
        978,   233,   3003,  2562,  2994,  10587, 10030, 2377,  1902,  5354,  4447,  1555,  263,
        27027, 2283,  305,   669,   1912,  601,   6186,  429,   1930,  14873, 1784,  1661,  524,
        3577,  236,   2360,  6146,  2850,  55637, 1753,  4178,  8466,  222,   2579,  2743,  2031,
        2226,  2276,  374,   2132,  813,   23788, 1610,  4422,  5159,  1725,  3597,  3366,  14336,
        579,   165,   1375,  10018, 12616, 9816,  1371,  536,   1867,  10864, 857,   2206,  5788,
        434,   8085,  17618, 727,   3639,  1595,  4944,  2129,  2029,  8195,  8344,  6232,  9183,
        8126,  1870,  3296,  7455,  8947,  25017, 541,   19115, 368,   566,   5674,  411,   522,
        1027,  8215,  2050,  6544,  10049, 614,   774,   2333,  3007,  35201, 4706,  1152,  1785,
        1028,  1540,  3743,  493,   4474,  2521,  26845, 8354,  864,   18915, 5465,  2447,  42,
        4511,  1660,  166,   1249,  6259,  2553,  304,   272,   7286,  73,    6554,  899,   2816,
        5197,  13330, 7054,  2818,  3199,  811,   922,   350,   7514,  4452,  3449,  2663,  4708,
        418,   1621,  1171,  3471,  88,    11345, 412,   1559,  194};
    return is_SPRP32(x, bases[h]);
}
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    std::uint64_t r = 1;
    std::uint64_t y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    std::int64_t d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr std::int64_t bases[3] = {2, 7, 61};
    for (std::int64_t a : bases) {
        std::int64_t t = d;
        std::int64_t y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) { return false; }
    }
    return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    std::int64_t s = b, t = a;
    std::int64_t m0 = 0, m1 = 1;
    while (t) {
        std::int64_t u = s / t;
        s -= t * u;
        m0 -= m1 * u;
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) { x /= i; }
        }
    }
    if (x > 1) { divs[cnt++] = x; }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
}  // namespace internal
namespace internal {
template <class T>
using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value ||
                                                       std::is_same<T, __int128>::value,
                                                   std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                                         std::is_same<T, unsigned __int128>::value,
                                                     std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;
template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
    typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
}  // namespace internal
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
}  // namespace internal
template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;
  public:
    static constexpr int mod() { return m; }
    static constexpr mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    constexpr static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    constexpr static_modint(T v) : _v(0) {
        std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    constexpr static_modint(T v) : _v(0) {
        _v = (unsigned int)(v % umod());
    }
    constexpr unsigned int val() const { return _v; }
    constexpr mint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    constexpr mint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    constexpr mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    constexpr mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    constexpr mint &operator+=(const mint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr mint &operator-=(const mint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr mint &operator*=(const mint &rhs) {
        std::uint64_t z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
    constexpr mint operator+() const { return *this; }
    constexpr mint operator-() const { return mint() - *this; }
    constexpr mint pow(std::int64_t n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    constexpr mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }
    friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }
    friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }
    friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }
    friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }
    friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }
    friend std::istream &operator>>(std::istream &is, mint &rhs) {
        std::int64_t t;
        is >> t;
        rhs = mint(t);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {
        return os << rhs._v;
    }
  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;
  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    dynamic_modint(T v) {
        std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    unsigned int val() const { return _v; }
    mint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    mint &operator+=(const mint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint &operator-=(const mint &rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint &operator*=(const mint &rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(std::int64_t n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }
    friend std::istream &operator>>(std::istream &is, mint &rhs) {
        std::int64_t t;
        is >> t;
        rhs = mint(t);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) {
        return os << rhs._v;
    }
  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998 = static_modint<998244353>;
using modint107 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
}  // namespace internal
template <class mint = modint998, internal::is_modint_t<mint> * = nullptr>
struct Combination {
    Combination() : _fact(), _inv(), _finv() {}
    mint operator()(int n, int k) {
        if (n < k || n < 0 || k < 0) return 0;
        _init(n);
        return _fact[n] * _finv[k] * _finv[n - k];
    }
    mint fact(int x) {
        assert(x >= 0);
        _init(x);
        return _fact[x];
    }
    mint finv(int x) {
        assert(x >= 0);
        _init(x);
        return _finv[x];
    }
    mint naive(int n, int k) const {
        if (n < k || n < 0 || k < 0) return 0;
        if (n - k < k) k = n - k;
        mint res = 1;
        for (int i = 0; i < k; ++i) {
            res *= n - i;
            res /= i + 1;
        }
        return res;
    }
    mint permu(int n, int k) {
        if (n < k || n < 0 || k < 0) return 0;
        _init(n);
        return _fact[n] * _finv[n - k];
    }
  private:
    static constexpr int _mod = mint::mod();
    std::vector<mint> _fact, _inv, _finv;
    void _init(int n) {
        if ((int)_fact.size() > n) return;
        int m = _fact.size();
        _fact.resize(n + 1);
        for (int i = m; i <= n; ++i) {
            if (i == 0) _fact[i] = 1;
            else _fact[i] = _fact[i - 1] * i;
        }
        _inv.resize(n + 1);
        for (int i = m; i <= n; ++i) {
            if (i <= 1) _inv[i] = 1;
            else _inv[i] = -_inv[_mod % i] * (_mod / i);
        }
        _finv.resize(n + 1);
        for (int i = m; i <= n; ++i) {
            if (i == 0) _finv[i] = 1;
            else _finv[i] = _finv[i - 1] * _inv[i];
        }
    }
};
template <class mint = modint998>
std::vector<mint> offline_binomial_sum(const std::vector<std::pair<int, int>> &queries) {
    std::vector<mint> res(queries.size());
    if (queries.empty()) return res;
    int max_n = queries[0].first;
    for (int i = 1; i < (int)queries.size(); ++i) max_n = std::max(max_n, queries[i].first);
    Mo mo(max_n + 1);
    for (int i = 0; i < (int)queries.size(); ++i) mo.add(queries[i].second, queries[i].first);
    Combination<mint> binom;
    mint sum = 1;
    mint inv2 = mint(2).inv();
    int n = 0, k = 0;
    auto al = [&binom, &sum, &n, &k](int) { sum -= binom(n, k--); };
    auto dl = [&binom, &sum, &n, &k](int) { sum += binom(n, ++k); };
    auto ar = [&binom, &sum, &n, &k](int) { sum += sum - binom(n++, k); };
    auto dr = [&binom, &sum, &n, &k, &inv2](int) { sum = (sum + binom(--n, k)) * inv2; };
    auto rem = [&res, &sum](int x) { res[x] = sum; };
    mo.solve(al, ar, dl, dr, rem);
    return res;
}
using Mint = modint998;
int main(void) {
    int q;
    std::cin >> q;
    std::vector<std::pair<int, int>> a(q);
    for (int i = 0; i < q; ++i) {
        int n, k;
        std::cin >> n >> k;
        a[i] = {n - 1, k - 1};
    }
    auto ans = offline_binomial_sum(a);
    for (int i = 0; i < q; ++i) ans[i] *= Mint(2).pow(a[i].first + 1) - 1;
    for (int i = 0; i < q; ++i) std::cout << ans[i] << '\n';
    return 0;
}
0