結果
問題 |
No.2206 Popcount Sum 2
|
ユーザー |
|
提出日時 | 2025-02-03 16:53:17 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 956 ms / 4,000 ms |
コード長 | 23,650 bytes |
コンパイル時間 | 1,768 ms |
コンパイル使用メモリ | 132,228 KB |
実行使用メモリ | 10,920 KB |
最終ジャッジ日時 | 2025-02-03 16:53:35 |
合計ジャッジ時間 | 14,679 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 18 |
ソースコード
// competitive-verifier: PROBLEM https://yukicoder.me/problems/no/2206 #include <iostream> #include <utility> #include <vector> #include <algorithm> #include <cmath> #include <numeric> /** * @brief Mo's algorithm * @see https://ei1333.hateblo.jp/entry/2017/09/11/211011 * @see https://snuke.hatenablog.com/entry/2016/07/01/000000 */ struct Mo { Mo(int n) : _left(), _right(), _order(), _size(n), _nl(0), _nr(0) {} void input(int q, int bias = 1, int closed = 0) { for (int i = 0; i < q; ++i) { int l, r; std::cin >> l >> r; add(l - bias, r - bias + closed); } } void add(int l, int r) { _left.emplace_back(l); _right.emplace_back(r); } void emplace(int l, int r) { return add(l, r); } void insert(int l, int r) { return add(l, r); } template <class F, class G, class H> void solve(F add, G del, H rem) { build(); for (int idx : _order) { while (_nl > _left[idx]) add(--_nl); while (_nr < _right[idx]) add(_nr++); while (_nl < _left[idx]) del(_nl++); while (_nr > _right[idx]) del(--_nr); rem(idx); } } template <class F, class G, class H, class I, class K> void solve(F addl, G addr, H dell, I delr, K rem) { build(); for (int idx : _order) { while (_nl > _left[idx]) addl(--_nl); while (_nr < _right[idx]) addr(_nr++); while (_nl < _left[idx]) dell(_nl++); while (_nr > _right[idx]) delr(--_nr); rem(idx); } } private: std::vector<int> _left, _right, _order; int _size, _nl, _nr; void build() { int q = _left.size(); int width = std::max(1, int(_size / std::sqrt(q))); _order.resize(q); std::iota(_order.begin(), _order.end(), 0); std::sort(_order.begin(), _order.end(), [&](int a, int b) -> bool { if (_left[a] / width != _left[b] / width) return _left[a] < _left[b]; return (_left[a] / width % 2 == 0) ? (_right[a] < _right[b]) : (_right[b] < _right[a]); }); } }; #include <cassert> #include <cstdint> #include <type_traits> namespace internal { // @param m `1 <= m` // @return x mod m constexpr std::int64_t safe_mod(std::int64_t x, std::int64_t m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; std::uint64_t im; // @param m `1 <= m` explicit barrett(unsigned int m) : _m(m), im((std::uint64_t)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { std::uint64_t z = a; z *= b; std::uint64_t x = (std::uint64_t)(((__uint128_t)(z)*im) >> 64); std::uint64_t y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; struct montgomery { std::uint64_t _m; std::uint64_t im; std::uint64_t r2; // @param m `1 <= m` explicit constexpr montgomery(std::uint64_t m) : _m(m), im(m), r2(-__uint128_t(m) % m) { for (int i = 0; i < 5; ++i) im = im * (2 - _m * im); im = -im; } // @return m constexpr std::uint64_t umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` constexpr std::uint64_t mul(std::uint64_t a, std::uint64_t b) const { return mr(mr(a, b), r2); } constexpr std::uint64_t exp(std::uint64_t a, std::uint64_t b) const { std::uint64_t res = 1, p = mr(a, r2); while (b) { if (b & 1) res = mr(res, p); p = mr(p, p); b >>= 1; } return res; } constexpr bool same_pow(std::uint64_t x, int s, std::uint64_t n) const { x = mr(x, r2), n = mr(n, r2); for (int r = 0; r < s; r++) { if (x == n) return true; x = mr(x, x); } return false; } private: constexpr std::uint64_t mr(std::uint64_t x) const { return ((__uint128_t)(x * im) * _m + x) >> 64; } constexpr std::uint64_t mr(std::uint64_t a, std::uint64_t b) const { __uint128_t t = (__uint128_t)a * b; std::uint64_t inc = std::uint64_t(t) != 0; std::uint64_t x = t >> 64, y = ((__uint128_t)(a * b * im) * _m) >> 64; unsigned long long z = 0; bool f = __builtin_uaddll_overflow(x, y, &z); z += inc; return f ? z - _m : z; } }; constexpr bool is_SPRP32(std::uint32_t n, std::uint32_t a) { std::uint32_t d = n - 1, s = 0; while ((d & 1) == 0) ++s, d >>= 1; std::uint64_t cur = 1, pw = d; while (pw) { if (pw & 1) cur = (cur * a) % n; a = (std::uint64_t)a * a % n; pw >>= 1; } if (cur == 1) return true; for (std::uint32_t r = 0; r < s; r++) { if (cur == n - 1) return true; cur = cur * cur % n; } return false; } // given 2 <= n,a < 2^64, a prime, check whether n is a-SPRP constexpr bool is_SPRP64(const montgomery &m, std::uint64_t a) { auto n = m.umod(); if (n == a) return true; if (n % a == 0) return false; std::uint64_t d = n - 1; int s = 0; while ((d & 1) == 0) ++s, d >>= 1; std::uint64_t cur = m.exp(a, d); if (cur == 1) return true; return m.same_pow(cur, s, n - 1); } constexpr bool is_prime_constexpr(std::uint64_t x) { if (x == 2 || x == 3 || x == 5 || x == 7) return true; if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false; if (x < 121) return (x > 1); montgomery m(x); constexpr std::uint64_t bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; for (auto a : bases) { if (!is_SPRP64(m, a)) return false; } return true; } constexpr bool is_prime_constexpr(std::int64_t x) { if (x < 0) return false; return is_prime_constexpr(std::uint64_t(x)); } constexpr bool is_prime_constexpr(std::uint32_t x) { if (x == 2 || x == 3 || x == 5 || x == 7) return true; if (x % 2 == 0 || x % 3 == 0 || x % 5 == 0 || x % 7 == 0) return false; if (x < 121) return (x > 1); std::uint64_t h = x; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) * 0x45d9f3b; h = ((h >> 16) ^ h) & 255; constexpr uint16_t bases[] = { 15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620, 560, 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462, 10277, 8028, 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298, 1074, 2391, 5113, 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239, 746, 2951, 556, 2206, 3778, 481, 1522, 3476, 481, 2487, 3266, 5633, 488, 3373, 6441, 3344, 17, 15105, 1490, 4154, 2036, 1882, 1813, 467, 3307, 14042, 6371, 658, 1005, 903, 737, 1887, 7447, 1888, 2848, 1784, 7559, 3400, 951, 13969, 4304, 177, 41, 19875, 3110, 13221, 8726, 571, 7043, 6943, 1199, 352, 6435, 165, 1169, 3315, 978, 233, 3003, 2562, 2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263, 27027, 2283, 305, 669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524, 3577, 236, 2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031, 2226, 2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336, 579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206, 5788, 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344, 6232, 9183, 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566, 5674, 411, 522, 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007, 35201, 4706, 1152, 1785, 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354, 864, 18915, 5465, 2447, 42, 4511, 1660, 166, 1249, 6259, 2553, 304, 272, 7286, 73, 6554, 899, 2816, 5197, 13330, 7054, 2818, 3199, 811, 922, 350, 7514, 4452, 3449, 2663, 4708, 418, 1621, 1171, 3471, 88, 11345, 412, 1559, 194}; return is_SPRP32(x, bases[h]); } // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr std::int64_t pow_mod_constexpr(std::int64_t x, std::int64_t n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); std::uint64_t r = 1; std::uint64_t y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; std::int64_t d = n - 1; while (d % 2 == 0) d /= 2; constexpr std::int64_t bases[3] = {2, 7, 61}; for (std::int64_t a : bases) { std::int64_t t = d; std::int64_t y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<std::int64_t, std::int64_t> inv_gcd(std::int64_t a, std::int64_t b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; std::int64_t s = b, t = a; std::int64_t m0 = 0, m1 = 1; while (t) { std::int64_t u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (std::int64_t)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal namespace internal { template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)> * = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static constexpr mint raw(int v) { mint x; x._v = v; return x; } constexpr static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> constexpr static_modint(T v) : _v(0) { std::int64_t x = (std::int64_t)(v % (std::int64_t)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> constexpr static_modint(T v) : _v(0) { _v = (unsigned int)(v % umod()); } constexpr unsigned int val() const { return _v; } constexpr mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } constexpr mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } constexpr mint operator++(int) { mint result = *this; ++*this; return result; } constexpr mint operator--(int) { mint result = *this; --*this; return result; } constexpr mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } constexpr mint &operator-=(const mint &rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } constexpr mint &operator*=(const mint &rhs) { std::uint64_t z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } constexpr mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } constexpr mint operator+() const { return *this; } constexpr mint operator-() const { return mint() - *this; } constexpr mint pow(std::int64_t n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } constexpr mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } friend std::istream &operator>>(std::istream &is, mint &rhs) { std::int64_t t; is >> t; rhs = mint(t); return is; } friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) { return os << rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T> * = nullptr> dynamic_modint(T v) { std::int64_t x = (std::int64_t)(v % (std::int64_t)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T> * = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint &operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint &operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint &operator+=(const mint &rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator-=(const mint &rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint &operator*=(const mint &rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(std::int64_t n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; } friend std::istream &operator>>(std::istream &is, mint &rhs) { std::int64_t t; is >> t; rhs = mint(t); return is; } friend constexpr std::ostream &operator<<(std::ostream &os, const mint &rhs) { return os << rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998 = static_modint<998244353>; using modint107 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal template <class mint = modint998, internal::is_modint_t<mint> * = nullptr> struct Combination { Combination() : _fact(), _inv(), _finv() {} mint operator()(int n, int k) { if (n < k || n < 0 || k < 0) return 0; _init(n); return _fact[n] * _finv[k] * _finv[n - k]; } mint fact(int x) { assert(x >= 0); _init(x); return _fact[x]; } mint finv(int x) { assert(x >= 0); _init(x); return _finv[x]; } mint naive(int n, int k) const { if (n < k || n < 0 || k < 0) return 0; if (n - k < k) k = n - k; mint res = 1; for (int i = 0; i < k; ++i) { res *= n - i; res /= i + 1; } return res; } mint permu(int n, int k) { if (n < k || n < 0 || k < 0) return 0; _init(n); return _fact[n] * _finv[n - k]; } private: static constexpr int _mod = mint::mod(); std::vector<mint> _fact, _inv, _finv; void _init(int n) { if ((int)_fact.size() > n) return; int m = _fact.size(); _fact.resize(n + 1); for (int i = m; i <= n; ++i) { if (i == 0) _fact[i] = 1; else _fact[i] = _fact[i - 1] * i; } _inv.resize(n + 1); for (int i = m; i <= n; ++i) { if (i <= 1) _inv[i] = 1; else _inv[i] = -_inv[_mod % i] * (_mod / i); } _finv.resize(n + 1); for (int i = m; i <= n; ++i) { if (i == 0) _finv[i] = 1; else _finv[i] = _finv[i - 1] * _inv[i]; } } }; template <class mint = modint998> std::vector<mint> offline_binomial_sum(const std::vector<std::pair<int, int>> &queries) { std::vector<mint> res(queries.size()); if (queries.empty()) return res; int max_n = queries[0].first; for (int i = 1; i < (int)queries.size(); ++i) max_n = std::max(max_n, queries[i].first); Mo mo(max_n + 1); for (int i = 0; i < (int)queries.size(); ++i) mo.add(queries[i].second, queries[i].first); Combination<mint> binom; mint sum = 1; mint inv2 = mint(2).inv(); int n = 0, k = 0; auto al = [&binom, &sum, &n, &k](int) { sum -= binom(n, k--); }; auto dl = [&binom, &sum, &n, &k](int) { sum += binom(n, ++k); }; auto ar = [&binom, &sum, &n, &k](int) { sum += sum - binom(n++, k); }; auto dr = [&binom, &sum, &n, &k, &inv2](int) { sum = (sum + binom(--n, k)) * inv2; }; auto rem = [&res, &sum](int x) { res[x] = sum; }; mo.solve(al, ar, dl, dr, rem); return res; } using Mint = modint998; int main(void) { int q; std::cin >> q; std::vector<std::pair<int, int>> a(q); for (int i = 0; i < q; ++i) { int n, k; std::cin >> n >> k; a[i] = {n - 1, k - 1}; } auto ans = offline_binomial_sum(a); for (int i = 0; i < q; ++i) ans[i] *= Mint(2).pow(a[i].first + 1) - 1; for (int i = 0; i < q; ++i) std::cout << ans[i] << '\n'; return 0; }