結果
| 問題 |
No.2964 Obstruction Bingo
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-02-07 23:43:37 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 318 ms / 2,468 ms |
| コード長 | 2,803 bytes |
| コンパイル時間 | 373 ms |
| コンパイル使用メモリ | 82,588 KB |
| 実行使用メモリ | 97,504 KB |
| 最終ジャッジ日時 | 2025-02-07 23:43:50 |
| 合計ジャッジ時間 | 11,197 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 49 |
ソースコード
import sys
import math
import bisect
from heapq import heapify, heappop, heappush
from collections import deque, defaultdict, Counter
from functools import lru_cache
from itertools import accumulate, combinations, permutations, product
sys.set_int_max_str_digits(10 ** 6)
sys.setrecursionlimit(1000000)
MOD = 10 ** 9 + 7
MOD99 = 998244353
input = lambda: sys.stdin.readline().strip()
NI = lambda: int(input())
NMI = lambda: map(int, input().split())
NLI = lambda: list(NMI())
SI = lambda: input()
SMI = lambda: input().split()
SLI = lambda: list(SMI())
EI = lambda m: [NLI() for _ in range(m)]
def main():
L, K = NMI()
S = [ord(s)-ord("a") for s in SI()]
T = [ord(s)-ord("a") for s in SI()]
A = NLI()
total = sum(A)
inv_total = pow(total, MOD99-2, MOD99)
def f(k, i, j):
return k * (2*L+1) * L + i * (2*L+1) + j
# k回やってPNがi, PMがi+jのときの確率
dp = [0] * ((K+1)*(2*L+1)*L)
dp[f(0,0,0+L)] = 1
X = 0
Y = 0
for k in range(K):
for i in range(L):
for j in range(-L+1, L):
s = S[i]
t = T[(i+j)%L]
d = dp[f(k,i,j+L)]
if s == t:
# c == s == t
ni = i + 1
nj = i + j + 1 - ni
p = A[s] * inv_total % MOD99
dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99
dp[f(k + 1, ni % L, nj + L)] %= MOD99
# else
ni = i + 0
nj = i + j + 0 - ni
p = (total-A[s]) * inv_total % MOD99
dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99
dp[f(k + 1, ni % L, nj + L)] %= MOD99
else:
# c == s != t
ni = i + 1
nj = i + j + 0 - ni
p = A[s] * inv_total % MOD99
dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99
dp[f(k + 1, ni % L, nj + L)] %= MOD99
# c == t != s
ni = i + 0
nj = i + j + 1 - ni
p = A[t] * inv_total % MOD99
dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99
dp[f(k + 1, ni % L, nj + L)] %= MOD99
# else
ni = i + 0
nj = i + j + 0 - ni
p = (total-A[s]-A[t]) * inv_total % MOD99
dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99
dp[f(k + 1, ni % L, nj + L)] %= MOD99
for k in range(K+1):
for i in range(L):
X += dp[f(k, i, -L+L)]
Y += dp[f(k, i, L+L)]
print(X % MOD99, Y % MOD99)
if __name__ == "__main__":
main()