結果
問題 | No.2964 Obstruction Bingo |
ユーザー |
|
提出日時 | 2025-02-07 23:43:37 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 318 ms / 2,468 ms |
コード長 | 2,803 bytes |
コンパイル時間 | 373 ms |
コンパイル使用メモリ | 82,588 KB |
実行使用メモリ | 97,504 KB |
最終ジャッジ日時 | 2025-02-07 23:43:50 |
合計ジャッジ時間 | 11,197 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 49 |
ソースコード
import sys import math import bisect from heapq import heapify, heappop, heappush from collections import deque, defaultdict, Counter from functools import lru_cache from itertools import accumulate, combinations, permutations, product sys.set_int_max_str_digits(10 ** 6) sys.setrecursionlimit(1000000) MOD = 10 ** 9 + 7 MOD99 = 998244353 input = lambda: sys.stdin.readline().strip() NI = lambda: int(input()) NMI = lambda: map(int, input().split()) NLI = lambda: list(NMI()) SI = lambda: input() SMI = lambda: input().split() SLI = lambda: list(SMI()) EI = lambda m: [NLI() for _ in range(m)] def main(): L, K = NMI() S = [ord(s)-ord("a") for s in SI()] T = [ord(s)-ord("a") for s in SI()] A = NLI() total = sum(A) inv_total = pow(total, MOD99-2, MOD99) def f(k, i, j): return k * (2*L+1) * L + i * (2*L+1) + j # k回やってPNがi, PMがi+jのときの確率 dp = [0] * ((K+1)*(2*L+1)*L) dp[f(0,0,0+L)] = 1 X = 0 Y = 0 for k in range(K): for i in range(L): for j in range(-L+1, L): s = S[i] t = T[(i+j)%L] d = dp[f(k,i,j+L)] if s == t: # c == s == t ni = i + 1 nj = i + j + 1 - ni p = A[s] * inv_total % MOD99 dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99 dp[f(k + 1, ni % L, nj + L)] %= MOD99 # else ni = i + 0 nj = i + j + 0 - ni p = (total-A[s]) * inv_total % MOD99 dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99 dp[f(k + 1, ni % L, nj + L)] %= MOD99 else: # c == s != t ni = i + 1 nj = i + j + 0 - ni p = A[s] * inv_total % MOD99 dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99 dp[f(k + 1, ni % L, nj + L)] %= MOD99 # c == t != s ni = i + 0 nj = i + j + 1 - ni p = A[t] * inv_total % MOD99 dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99 dp[f(k + 1, ni % L, nj + L)] %= MOD99 # else ni = i + 0 nj = i + j + 0 - ni p = (total-A[s]-A[t]) * inv_total % MOD99 dp[f(k + 1, ni % L, nj + L)] += d * p % MOD99 dp[f(k + 1, ni % L, nj + L)] %= MOD99 for k in range(K+1): for i in range(L): X += dp[f(k, i, -L+L)] Y += dp[f(k, i, L+L)] print(X % MOD99, Y % MOD99) if __name__ == "__main__": main()