結果
問題 | No.2549 Paint Eggs |
ユーザー |
|
提出日時 | 2025-02-12 20:18:27 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 95 ms / 2,000 ms |
コード長 | 4,682 bytes |
コンパイル時間 | 3,454 ms |
コンパイル使用メモリ | 283,876 KB |
実行使用メモリ | 12,092 KB |
最終ジャッジ日時 | 2025-02-12 20:18:39 |
合計ジャッジ時間 | 8,549 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 45 |
ソースコード
# include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; const double pi = acos(-1); template<class T>constexpr T inf() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T hinf() { return inf<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); } template <typename T_char>T_char TU(T_char cX) { return toupper(cX); } template<class T> bool chmin(T& a,T b) { if(a > b){a = b; return true;} return false; } template<class T> bool chmax(T& a,T b) { if(a < b){a = b; return true;} return false; } int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(ll n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(ll n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } ll gcd(ll a, ll b) { if (b == 0)return a; return gcd(b, a%b); }; ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g*b; }; ll MOD(ll x, ll m){return (x%m+m)%m; } ll FLOOR(ll x, ll m) {ll r = (x%m+m)%m; return (x-r)/m; } template<class T> using dijk = priority_queue<T, vector<T>, greater<T>>; # define all(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(all((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(all((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(all((rprpr)),(rprpr).begin(),TU<char>) # define rep(i,upupu) for(ll i = 0, i##_len = (upupu);(i) < (i##_len);(i)++) # define reps(i,opopo) for(ll i = 1, i##_len = (opopo);(i) <= (i##_len);(i)++) # define len(x) ((ll)(x).size()) # define bit(n) (1LL << (n)) # define pb push_back # define exists(c, e) ((c).find(e) != (c).end()) struct INIT{ INIT(){ std::ios::sync_with_stdio(false); std::cin.tie(0); cout << fixed << setprecision(20); } }INIT; namespace mmrz { void solve(); } int main(){ mmrz::solve(); } #define debug(...) (static_cast<void>(0)) using namespace mmrz; template<typename T>struct segment_tree { using F = function<T(T, T)>; int offset; int n; vector<T> node; F combine; T identify; segment_tree(int _n, F _combine, T _identify) : segment_tree(vector<T>(_n, _identify), _combine, _identify) {} segment_tree(const vector<T> &v, F _combine, T _identify) : n((int)v.size()), combine(_combine), identify(_identify) { offset = 1; while(offset < n)offset <<= 1; node.resize(2*offset, identify); for(int i = 0;i < n;i++)node[i + offset] = v[i]; for(int i = offset - 1;i >= 1;i--)node[i] = combine(node[2 * i + 0], node[2 * i + 1]); } T operator[](int x) {return node[x + offset]; } void set(int x, T val){ assert(0 <= x && x < n); x += offset; node[x] = val; while(x >>= 1){ node[x] = combine(node[2 * x + 0], node[2 * x + 1]); } } T fold(int l, int r){ assert(0 <= l && l <= r && r <= n); if(l == r)return identify; T L = identify, R = identify; for(l += offset, r += offset; l < r;l >>= 1, r >>= 1){ if(l&1)L = combine(L, node[l++]); if(r&1)R = combine(node[--r], R); } return combine(L, R); } T all_fold() { return node[1]; }; int max_right(const function<bool(T)> f, int l = 0){ assert(0 <= l && l <= n); assert(f(identify)); if(l == n)return n; l += offset; T sum = identify; do{ while(l%2 == 0)l >>= 1; if(not f(combine(sum, node[l]))){ while(l < offset){ l <<= 1; if(f(combine(sum, node[l]))){ sum = combine(sum, node[l]); l++; } } return l - offset; } sum = combine(sum, node[l]); l++; }while((l&-l) != l); return n; } int min_left(const function<bool(T)> f, int r = -1){ if(r == 0)return 0; if(r == -1)r = n; r += offset; T sum = identify; do{ --r; while(r > 1 && (r % 2))r >>= 1; if(not f(combine(node[r], sum))){ while(r < offset){ r = r*2 + 1; if(f(combine(node[r], sum))){ sum = combine(node[r], sum); --r; } } return r+1 - offset; } sum = combine(node[r], sum); }while((r&-r) != r); return 0; } }; void SOLVE(){ int n, m, k; cin >> n >> m >> k; vector<ll> c(n), a(m); for(auto &x : c)cin >> x, x--; for(auto &x : a)cin >> x; ll ans = hinf<ll>(); segment_tree<ll> seg(m, [](ll l, ll r){return min(l, r);}, hinf<ll>()); rep(i, m)seg.set(i, a[i]*k); rep(i, k)seg.set(c[i], seg[c[i]]-a[c[i]]); chmin(ans, seg.all_fold()); for(int i = k;i < n;i++){ seg.set(c[i-k], seg[c[i-k]]+a[c[i-k]]); seg.set(c[i], seg[c[i]]-a[c[i]]); chmin(ans, seg.all_fold()); } cout << ans << endl; } void mmrz::solve(){ int t = 1; //cin >> t; while(t--)SOLVE(); }