結果

問題 No.3026 Range LCM (Online Version)
ユーザー noya2
提出日時 2025-02-13 22:59:38
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 26,985 bytes
コンパイル時間 5,773 ms
コンパイル使用メモリ 319,624 KB
実行使用メモリ 170,068 KB
最終ジャッジ日時 2025-02-14 01:46:58
合計ジャッジ時間 97,854 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 10 TLE * 22
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
using namespace std;

#include<bits/stdc++.h>
#line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp"
namespace noya2 {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
    os << p.first << " " << p.second;
    return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
    is >> p.first >> p.second;
    return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
    int s = (int)v.size();
    for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
    return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
    for (auto &x : v) is >> x;
    return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
    cin >> t;
    in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
    cout << t;
    if (sizeof...(u)) cout << sep;
    out(u...);
}

template<typename T>
void out(const vector<vector<T>> &vv){
    int s = (int)vv.size();
    for (int i = 0; i < s; i++) out(vv[i]);
}

struct IoSetup {
    IoSetup(){
        cin.tie(nullptr);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(7);
    }
} iosetup_noya2;

} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp"
namespace noya2{

const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 =  998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";

void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }

} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"

#line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"

namespace noya2{

unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
    if (a == 0 || b == 0) return a + b;
    int n = __builtin_ctzll(a); a >>= n;
    int m = __builtin_ctzll(b); b >>= m;
    while (a != b) {
        int mm = __builtin_ctzll(a - b);
        bool f = a > b;
        unsigned long long c = f ? a : b;
        b = f ? b : a;
        a = (c - b) >> mm;
    }
    return a << std::min(n, m);
}

template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }

long long sqrt_fast(long long n) {
    if (n <= 0) return 0;
    long long x = sqrt(n);
    while ((x + 1) * (x + 1) <= n) x++;
    while (x * x > n) x--;
    return x;
}

template<typename T> T floor_div(const T n, const T d) {
    assert(d != 0);
    return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}

template<typename T> T ceil_div(const T n, const T d) {
    assert(d != 0);
    return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}

template<typename T> void uniq(std::vector<T> &v){
    std::sort(v.begin(),v.end());
    v.erase(unique(v.begin(),v.end()),v.end());
}

template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }

template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }

template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }

} // namespace noya2
#line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"

#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;

namespace noya2{

/* ~ (. _________ . /) */

}

using namespace noya2;


#line 2 "c.cpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"
namespace noya2 {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; 
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m);

// constexpr long long primitive_root_constexpr(long long m){
//     if (m == (1LL << 47) - (1LL << 24) + 1) return 3;
//     return primitive_root_constexpr(static_cast<int>(m));
// }

} // namespace noya2
#line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

namespace noya2{

struct barrett {
    unsigned int _m;
    unsigned long long im;
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    unsigned int umod() const { return _m; }
    unsigned int mul(unsigned int a, unsigned int b) const {
        unsigned long long z = a;
        z *= b;
        unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64);
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

template <int m>
struct static_modint {
    using mint = static_modint;
  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    constexpr static_modint() : _v(0) {}
    template<std::signed_integral T>
    constexpr static_modint(T v){
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template<std::unsigned_integral T>
    constexpr static_modint(T v){
        _v = (unsigned int)(v % umod());
    }
    constexpr unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    constexpr mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (uint)(z % umod());
        return *this;
    }
    constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    constexpr mint operator+() const { return *this; }
    constexpr mint operator-() const { return mint() - *this; }
    constexpr mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    constexpr mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend constexpr mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend constexpr mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend constexpr mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend constexpr mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend constexpr bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend constexpr bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream &os, const mint& p) {
        return os << p.val();
    }
    friend std::istream &operator>>(std::istream &is, mint &a) {
        long long t; is >> t;
        a = mint(t);
        return (is);
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = is_prime_flag<m>;
};


template <int id> struct dynamic_modint {
    using mint = dynamic_modint;
  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template<std::signed_integral T>
    dynamic_modint(T v){
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template<std::unsigned_integral T>
    dynamic_modint(T v){
        _v = (unsigned int)(v % umod());
    }
    uint val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = noya2::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream &os, const mint& p) {
        return os << p.val();
    }
    friend std::istream &operator>>(std::istream &is, mint &a) {
        long long t; is >> t;
        a = mint(t);
        return (is);
    }

  private:
    unsigned int _v;
    static barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> noya2::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

template<typename T>
concept Modint = requires (T &a){
    T::mod();
    a.inv();
    a.val();
    a.pow(declval<int>());
};

} // namespace noya2
#line 4 "c.cpp"
using mint = modint998244353;
#line 2 "/Users/noya2/Desktop/Noya2_library/math/sieve.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/math/sieve.hpp"

namespace noya2{

struct Sieve {
    vector<int> primes, factor, mu;
    Sieve (int N = 1024){
        build(N);
    }
    void request(int N){
        int len = n_max();
        if (len >= N) return ;
        while (len < N) len <<= 1;
        build(len);
    }
    int n_max(){ return factor.size()-1; }
  private:
    void build (int N){
        primes.clear();
        factor.resize(N+1); fill(factor.begin(),factor.end(),0);
        mu.resize(N+1); fill(mu.begin(),mu.end(),1);

        for(int n = 2; n <= N; n++) {
            if (factor[n] == 0){
                primes.push_back(n);
                factor[n] = n;
                mu[n] = -1;
            }
            for (int p : primes){
                if(n * p > N || p > factor[n]) break;
                factor[n * p] = p;
                mu[n * p] = p == factor[n] ? 0 : -mu[n];
            }
        }
    }
} sieve;

int mobius_sieve(int n){
    assert(1 <= n && n <= sieve.n_max());
    return sieve.mu[n];
}
bool is_prime_sieve(int n){
    if (n <= 2) return n == 2;
    assert(n <= sieve.n_max());
    return sieve.factor[n] == n;
}

vector<pair<int,int>> prime_factorization_sieve(int n){
    assert(1 <= n && n <= sieve.n_max());
    vector<int> facts;
    while (n > 1){
        int p = sieve.factor[n];
        facts.push_back(p);
        n /= p;
    }
    vector<pair<int,int>> pes;
    int siz = facts.size();
    for (int l = 0, r = 0; l < siz; l = r){
        while (r < siz && facts[r] == facts[l]) r++;
        pes.emplace_back(facts[l],r-l);
    }
    return pes;
}

vector<int> divisor_enumeration_sieve(int n){
    auto pes = prime_factorization_sieve(n);
    vector<int> divs = {1};
    for (auto [p, e] : pes){
        vector<int> nxt; nxt.reserve(divs.size() * (e+1));
        for (auto x : divs){
            for (int tt = 0; tt <= e; tt++){
                nxt.push_back(x);
                x *= p;
            }
        }
        swap(divs,nxt);
    }
    return divs;
}

} // namespace noya2
#line 6 "c.cpp"

const int mx = 200100;
const int sq = sqrt(mx);

#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/range_tree.hpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp"

#line 5 "/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp"

namespace noya2{

template<typename T>
struct compress {
    std::vector<T> raws;
    compress () {}
    compress (const vector<T> &_raws) : raws(_raws){ build(); }
    void build(){
        std::sort(raws.begin(), raws.end());
        raws.erase(std::unique(raws.begin(), raws.end()), raws.end());
    }
    int id(const T &raw){ return lb(raw); }
    T raw(const int &id){ return raws[id]; }
    void add(const T &raw){ raws.emplace_back(raw); }
    void reserve(size_t sz){ raws.reserve(sz); }
    size_t size(){ return raws.size(); }
    int lb(const T &raw){ return lower_bound(all(raws),raw) - raws.begin(); }
    int ub(const T &raw){ return upper_bound(all(raws),raw) - raws.begin(); }
    bool contains(const T &raw){
        int jd = lb(raw);
        if (jd < (int)size()) return raws[jd] == raw;
        return false;
    }
    int contains_id(const T &raw){
        int jd = lb(raw);
        if (jd < (int)size() && raws[jd] == raw) return jd;
        return -1;
    }
};

} // namespace noya2
#line 5 "/Users/noya2/Desktop/Noya2_library/data_structure/range_tree.hpp"

namespace noya2 {

template<class M, template<class MM> class data_structure, typename Idx = ll>
struct range_tree {
    using DS = data_structure<M>;
    using T = typename M::value_type;
    void join(Idx x, Idx y){ ps.emplace_back(x,y); }
    void build(){
        for (auto &[x, y] : ps) xs.add(x);
        xs.build();
        //siz = bit_ceil(xs.size());
        siz = 1; while (siz < (int)(xs.size())) siz <<= 1;
        ys.resize(siz*2);
        for (auto &[x, y] : ps){
            int xid = xs.id(x) + siz;
            ys[xid].add(y);
            while (xid > 1){
                xid >>= 1;
                ys[xid].add(y);
            }
        }
        for (int i = 0; i < 2*siz; i++){
            ys[i].build();
            ds.emplace_back(ys[i].size());
        }
    }
    void set(Idx p, Idx q, T val){
        int i = xs.id(p) + siz;
        ds[i].set(ys[i].id(q),val);
        while (i > 1){
            i >>= 1;
            T lr = M::e();
            int i0 = ys[2*i+0].contains_id(q), i1 = ys[2*i+1].contains_id(q);
            if (i0 != -1) lr = M::op(lr, ds[2*i+0].get(i0));
            if (i1 != -1) lr = M::op(lr, ds[2*i+1].get(i1));
            ds[i].set(ys[i].id(q),lr);
        }
    }
    T get(Idx p, Idx q){
        int ip = xs.contains_id(p);
        if (ip == -1) return M::e();
        int i = ip + siz;
        int iq = ys[i].contains_id(q);
        if (iq == -1) return M::e();
        return ds[i].get(iq);
    }
    T prod(Idx lp, Idx rp, Idx lq, Idx rq){
        T res = M::e();
        int li = xs.lb(lp), ri = xs.lb(rp);
        for (li += siz, ri += siz; li < ri; li >>= 1, ri >>= 1){
            if (li & 1) res = M::op(res,ds[li].prod(ys[li].lb(lq),ys[li].lb(rq))), ++li;
            if (ri & 1) --ri, res = M::op(res,ds[ri].prod(ys[ri].lb(lq),ys[ri].lb(rq)));
        }
        return res;
    }
    int siz;
    vector<pair<Idx,Idx>> ps;
    compress<Idx> xs;
    vector<compress<Idx>> ys;
    vector<DS> ds;
};

} // namespace noya2
#line 11 "c.cpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/binary_indexed_tree.hpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/misc/concepts.hpp"

#include<concepts>

namespace noya2 {

template<class monoid>
concept Monoid = requires {
    typename monoid::value_type;
    {monoid::op(declval<typename monoid::value_type>(),declval<typename monoid::value_type>())} -> std::same_as<typename monoid::value_type>;
    {monoid::e()} -> std::same_as<typename monoid::value_type>;
};

template<class group>
concept Group = requires {
    requires Monoid<group>;
    {group::inv(declval<typename group::value_type>())} -> std::same_as<typename group::value_type>;
};

} // namespace noya2
#line 5 "/Users/noya2/Desktop/Noya2_library/data_structure/binary_indexed_tree.hpp"

namespace noya2{

template <Group G>
struct binary_indexed_tree {
    using T = typename G::value_type;
    binary_indexed_tree (int _n = 0) : n(_n), d(_n + 1, G::e()) {}
    void add(int i, T val) {
        for (int x = i+1; x <= n; x += x & -x) {
            d[x] = G::op(d[x],val);
        }
    }
    T prod(int r){
        return prefix_prod(r);
    }
    T prod(int l, int r) {
        return G::op(G::inv(prefix_prod(l)),prefix_prod(r));
    }
    T get(int i){
        return prod(i,i+1);
    }
    void set(int i, T val){
        add(i,G::op(G::inv(get(i)),val));
    }
  private:
    int n;
    std::vector<T> d;
    T prefix_prod(int i) {
        assert(0 <= i && i <= n);
        T ret = G::e();
        for (int x = i; x > 0; x -= x & -x) {
            ret = G::op(ret,d[x]);
        }
        return ret;
    }
};

} // namespace noya2
#line 13 "c.cpp"

template<typename T>
struct mul_group {
    using value_type = T;
    static constexpr T op(const T &a, const T &b){ return a * b; }
    static constexpr T e(){ return T(1); }
    static constexpr T inv(const T &a){ return a.inv(); }
};

template<typename T>
struct mulinv_group {
    using value_type = pair<T,T>;
    static constexpr value_type op(const value_type &a, const value_type &b){
        return value_type(a.first*b.first,a.second*b.second);
    }
    static constexpr value_type e(){
        return value_type(T(1),T(1));
    }
    static constexpr value_type inv(const value_type &a){
        return value_type(a.second,a.first);
    }
};

#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/segment_tree.hpp"

namespace noya2{

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = 0;
        size = 1;
        while (size < _n) size <<= 1, log++;

        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

} // namespace noya2
#line 37 "c.cpp"

int8_t op(int8_t a, int8_t b){
    return max(a,b);
}
int8_t e(){
    return 0;
}

void solve(){
    int n; in(n);
    vector<int> a(n); in(a);
    vector<vector<int>> ids(mx);
    vector<int> psml;
    vector<int> pid(mx);
    for (int p : sieve.primes){
        if (p >= sq) break;
        pid[p] = psml.size();
        psml.emplace_back(p);
    }
    int sz = psml.size();
    vector<vector<mint>> pws(sz,vector<mint>(30,1));
    rep(i,sz){
        rep(j,30-1){
            pws[i][j+1] = pws[i][j] * psml[i];
        }
    }
    vector<segtree<int8_t,op,e>> segs(sz,n);
    rep(i,n){
        for (auto [p, e] : prime_factorization_sieve(a[i])){
            if (p < sq){
                segs[pid[p]].set(i,e);
            }
            else {
                assert(e == 1);
                ids[p].emplace_back(i);
            }
        }
    }
    range_tree<mulinv_group<mint>,binary_indexed_tree,int> rt;
    mint tot = 1;
    rep(p,mx){
        if (ids[p].empty()) continue;
        tot *= p;
        ids[p].emplace_back(n);
        int pre = -1;
        for (int i : ids[p]){
            rt.join(pre,i);
            pre = i;
        }
    }
    rt.build();
    rep(p,mx){
        if (ids[p].empty()) continue;
        int pre = -1;
        mint ip = mint(p).inv();
        for (int i : ids[p]){
            rt.set(pre,i,{p,ip});
            pre = i;
        }
    }
    int q; in(q);
    mint pans = 1;
    while (q--){
        mint A, B; in(A,B);
        mint x = A * pans;
        int y = x.val() % n + 1;
        mint z = B * pans;
        int w = z.val() % n + 1;
        int l = min(y,w), r = max(y,w); l--;
        // int l, r; in(l,r); l--;
        mint ans = tot * rt.prod(-10,l,r,n+10).second;
        rep(i,sz){
            ans *= pws[i][segs[i].prod(l,r)];
        }
        out(ans);
        pans = ans;
    }
}

int main(){
    sieve.request(mx);
    int t = 1; //in(t);
    while (t--) { solve(); }
}
0