結果

問題 No.3026 Range LCM (Online Version)
ユーザー noya2
提出日時 2025-02-14 01:12:23
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
(最新)
AC  
(最初)
実行時間 -
コード長 27,225 bytes
コンパイル時間 4,494 ms
コンパイル使用メモリ 329,176 KB
実行使用メモリ 189,692 KB
最終ジャッジ日時 2025-02-14 02:14:38
合計ジャッジ時間 72,205 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 28 TLE * 8
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"
using namespace std;

#include<bits/stdc++.h>
#line 1 "/Users/noya2/Desktop/Noya2_library/template/inout_old.hpp"
namespace noya2 {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p){
    os << p.first << " " << p.second;
    return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p){
    is >> p.first >> p.second;
    return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v){
    int s = (int)v.size();
    for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
    return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v){
    for (auto &x : v) is >> x;
    return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u){
    cin >> t;
    in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u){
    cout << t;
    if (sizeof...(u)) cout << sep;
    out(u...);
}

template<typename T>
void out(const vector<vector<T>> &vv){
    int s = (int)vv.size();
    for (int i = 0; i < s; i++) out(vv[i]);
}

struct IoSetup {
    IoSetup(){
        cin.tie(nullptr);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(7);
    }
} iosetup_noya2;

} // namespace noya2
#line 1 "/Users/noya2/Desktop/Noya2_library/template/const.hpp"
namespace noya2{

const int iinf = 1'000'000'007;
const long long linf = 2'000'000'000'000'000'000LL;
const long long mod998 =  998244353;
const long long mod107 = 1000000007;
const long double pi = 3.14159265358979323;
const vector<int> dx = {0,1,0,-1,1,1,-1,-1};
const vector<int> dy = {1,0,-1,0,1,-1,-1,1};
const string ALP = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
const string alp = "abcdefghijklmnopqrstuvwxyz";
const string NUM = "0123456789";

void yes(){ cout << "Yes\n"; }
void no(){ cout << "No\n"; }
void YES(){ cout << "YES\n"; }
void NO(){ cout << "NO\n"; }
void yn(bool t){ t ? yes() : no(); }
void YN(bool t){ t ? YES() : NO(); }

} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"

#line 6 "/Users/noya2/Desktop/Noya2_library/template/utils.hpp"

namespace noya2{

unsigned long long inner_binary_gcd(unsigned long long a, unsigned long long b){
    if (a == 0 || b == 0) return a + b;
    int n = __builtin_ctzll(a); a >>= n;
    int m = __builtin_ctzll(b); b >>= m;
    while (a != b) {
        int mm = __builtin_ctzll(a - b);
        bool f = a > b;
        unsigned long long c = f ? a : b;
        b = f ? b : a;
        a = (c - b) >> mm;
    }
    return a << std::min(n, m);
}

template<typename T> T gcd_fast(T a, T b){ return static_cast<T>(inner_binary_gcd(std::abs(a),std::abs(b))); }

long long sqrt_fast(long long n) {
    if (n <= 0) return 0;
    long long x = sqrt(n);
    while ((x + 1) * (x + 1) <= n) x++;
    while (x * x > n) x--;
    return x;
}

template<typename T> T floor_div(const T n, const T d) {
    assert(d != 0);
    return n / d - static_cast<T>((n ^ d) < 0 && n % d != 0);
}

template<typename T> T ceil_div(const T n, const T d) {
    assert(d != 0);
    return n / d + static_cast<T>((n ^ d) >= 0 && n % d != 0);
}

template<typename T> void uniq(std::vector<T> &v){
    std::sort(v.begin(),v.end());
    v.erase(unique(v.begin(),v.end()),v.end());
}

template <typename T, typename U> inline bool chmin(T &x, U y) { return (y < x) ? (x = y, true) : false; }

template <typename T, typename U> inline bool chmax(T &x, U y) { return (x < y) ? (x = y, true) : false; }

template<typename T> inline bool range(T l, T x, T r){ return l <= x && x < r; }

} // namespace noya2
#line 8 "/Users/noya2/Desktop/Noya2_library/template/template.hpp"

#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define repp(i,m,n) for (int i = (m); i < (int)(n); i++)
#define reb(i,n) for (int i = (int)(n-1); i >= 0; i--)
#define all(v) (v).begin(),(v).end()

using ll = long long;
using ld = long double;
using uint = unsigned int;
using ull = unsigned long long;
using pii = pair<int,int>;
using pll = pair<ll,ll>;
using pil = pair<int,ll>;
using pli = pair<ll,int>;

namespace noya2{

/* ~ (. _________ . /) */

}

using namespace noya2;


#line 2 "c.cpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/math/prime.hpp"
namespace noya2 {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime_flag = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; 
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root_flag = primitive_root_constexpr(m);

// constexpr long long primitive_root_constexpr(long long m){
//     if (m == (1LL << 47) - (1LL << 24) + 1) return 3;
//     return primitive_root_constexpr(static_cast<int>(m));
// }

} // namespace noya2
#line 6 "/Users/noya2/Desktop/Noya2_library/utility/modint.hpp"

namespace noya2{

struct barrett {
    unsigned int _m;
    unsigned long long im;
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    unsigned int umod() const { return _m; }
    unsigned int mul(unsigned int a, unsigned int b) const {
        unsigned long long z = a;
        z *= b;
        unsigned long long x = (unsigned long long)((__uint128_t(z) * im) >> 64);
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

template <int m>
struct static_modint {
    using mint = static_modint;
  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    constexpr static_modint() : _v(0) {}
    template<std::signed_integral T>
    constexpr static_modint(T v){
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template<std::unsigned_integral T>
    constexpr static_modint(T v){
        _v = (unsigned int)(v % umod());
    }
    constexpr unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    constexpr mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (uint)(z % umod());
        return *this;
    }
    constexpr mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    constexpr mint operator+() const { return *this; }
    constexpr mint operator-() const { return mint() - *this; }
    constexpr mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    constexpr mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend constexpr mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend constexpr mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend constexpr mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend constexpr mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend constexpr bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend constexpr bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream &os, const mint& p) {
        return os << p.val();
    }
    friend std::istream &operator>>(std::istream &is, mint &a) {
        long long t; is >> t;
        a = mint(t);
        return (is);
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = is_prime_flag<m>;
};


template <int id> struct dynamic_modint {
    using mint = dynamic_modint;
  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template<std::signed_integral T>
    dynamic_modint(T v){
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template<std::unsigned_integral T>
    dynamic_modint(T v){
        _v = (unsigned int)(v % umod());
    }
    uint val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = noya2::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
    friend std::ostream &operator<<(std::ostream &os, const mint& p) {
        return os << p.val();
    }
    friend std::istream &operator>>(std::istream &is, mint &a) {
        long long t; is >> t;
        a = mint(t);
        return (is);
    }

  private:
    unsigned int _v;
    static barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> noya2::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

template<typename T>
concept Modint = requires (T &a){
    T::mod();
    a.inv();
    a.val();
    a.pow(declval<int>());
};

} // namespace noya2
#line 4 "c.cpp"
using mint = modint998244353;
#line 2 "/Users/noya2/Desktop/Noya2_library/math/sieve.hpp"

#line 4 "/Users/noya2/Desktop/Noya2_library/math/sieve.hpp"

namespace noya2{

struct Sieve {
    vector<int> primes, factor, mu;
    Sieve (int N = 1024){
        build(N);
    }
    void request(int N){
        int len = n_max();
        if (len >= N) return ;
        while (len < N) len <<= 1;
        build(len);
    }
    int n_max(){ return factor.size()-1; }
  private:
    void build (int N){
        primes.clear();
        factor.resize(N+1); fill(factor.begin(),factor.end(),0);
        mu.resize(N+1); fill(mu.begin(),mu.end(),1);

        for(int n = 2; n <= N; n++) {
            if (factor[n] == 0){
                primes.push_back(n);
                factor[n] = n;
                mu[n] = -1;
            }
            for (int p : primes){
                if(n * p > N || p > factor[n]) break;
                factor[n * p] = p;
                mu[n * p] = p == factor[n] ? 0 : -mu[n];
            }
        }
    }
} sieve;

int mobius_sieve(int n){
    assert(1 <= n && n <= sieve.n_max());
    return sieve.mu[n];
}
bool is_prime_sieve(int n){
    if (n <= 2) return n == 2;
    assert(n <= sieve.n_max());
    return sieve.factor[n] == n;
}

vector<pair<int,int>> prime_factorization_sieve(int n){
    assert(1 <= n && n <= sieve.n_max());
    vector<int> facts;
    while (n > 1){
        int p = sieve.factor[n];
        facts.push_back(p);
        n /= p;
    }
    vector<pair<int,int>> pes;
    int siz = facts.size();
    for (int l = 0, r = 0; l < siz; l = r){
        while (r < siz && facts[r] == facts[l]) r++;
        pes.emplace_back(facts[l],r-l);
    }
    return pes;
}

vector<int> divisor_enumeration_sieve(int n){
    auto pes = prime_factorization_sieve(n);
    vector<int> divs = {1};
    for (auto [p, e] : pes){
        vector<int> nxt; nxt.reserve(divs.size() * (e+1));
        for (auto x : divs){
            for (int tt = 0; tt <= e; tt++){
                nxt.push_back(x);
                x *= p;
            }
        }
        swap(divs,nxt);
    }
    return divs;
}

} // namespace noya2
#line 6 "c.cpp"

const int mx = 200010;
const int sq = sqrt(mx);


template<typename T>
struct mulinv_group {
    using value_type = pair<T,T>;
    static constexpr value_type op(const value_type &a, const value_type &b){
        return value_type(a.first*b.first,a.second*b.second);
    }
    static constexpr value_type e(){
        return value_type(T(1),T(1));
    }
    static constexpr value_type inv(const value_type &a){
        return value_type(a.second,a.first);
    }
};

template <typename E>
struct Monoid_Max {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); }
  static constexpr X unit() { return E(0); }
  static constexpr bool commute = true;
};

namespace maspy {

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define len(x) ll(x.size())

// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(uint32_t x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(uint64_t x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }

// 冪等なモノイドであることを仮定。disjoint sparse table より x 倍高速
template <class Monoid>
struct Sparse_Table {
  using MX = Monoid;
  using X = typename MX::value_type;
  int n, log;
  vvc<X> dat;

  Sparse_Table() {}
  Sparse_Table(int n) { build(n); }
  template <typename F>
  Sparse_Table(int n, F f) {
    build(n, f);
  }
  Sparse_Table(const vc<X>& v) { build(v); }

  void build(int m) {
    build(m, [](int i) -> X { return MX::unit(); });
  }
  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m, log = 1;
    while ((1 << log) < n) ++log;
    dat.resize(log);
    dat[0].resize(n);
    FOR(i, n) dat[0][i] = f(i);

    FOR(i, log - 1) {
      dat[i + 1].resize(len(dat[i]) - (1 << i));
      FOR(j, len(dat[i]) - (1 << i)) {
        dat[i + 1][j] = MX::op(dat[i][j], dat[i][j + (1 << i)]);
      }
    }
  }

  X prod(int L, int R) {
    if (L == R) return MX::unit();
    if (R == L + 1) return dat[0][L];
    int k = topbit(R - L - 1);
    return MX::op(dat[k][L], dat[k][R - (1 << k)]);
  }

  template <class F>
  int max_right(const F check, int L) {
    assert(0 <= L && L <= n && check(MX::unit()));
    if (L == n) return n;
    int ok = L, ng = n + 1;
    while (ok + 1 < ng) {
      int k = (ok + ng) / 2;
      bool bl = check(prod(L, k));
      if (bl) ok = k;
      if (!bl) ng = k;
    }
    return ok;
  }

  template <class F>
  int min_left(const F check, int R) {
    assert(0 <= R && R <= n && check(MX::unit()));
    if (R == 0) return 0;
    int ok = R, ng = -1;
    while (ng + 1 < ok) {
      int k = (ok + ng) / 2;
      bool bl = check(prod(k, R));
      if (bl) ok = k;
      if (!bl) ng = k;
    }
    return ok;
  }
};

template <typename Monoid, typename SPARSE_TABLE, int LOG = 4>
struct Static_Range_Product {
  using MX = Monoid;
  using X = typename MX::value_type;
  int N, b_num;
  vc<X> A, pre, suf; // inclusive
  SPARSE_TABLE ST;

  Static_Range_Product() {}
  template <typename F>
  Static_Range_Product(int n, F f) {
    build(n, f);
  }
  Static_Range_Product(const vc<X>& v) { build(v); }

  void build(const vc<X>& v) {
    build(len(v), [&](int i) -> X { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    N = m;
    b_num = N >> LOG;
    A.resize(N);
    FOR(i, N) A[i] = f(i);
    pre = A, suf = A;
    constexpr int mask = (1 << LOG) - 1;
    FOR(i, 1, N) {
      if (i & mask) pre[i] = MX::op(pre[i - 1], A[i]);
    }
    FOR_R(i, 1, N) {
      if (i & mask) suf[i - 1] = MX::op(A[i - 1], suf[i]);
    }
    ST.build(b_num, [&](int i) -> X { return suf[i << LOG]; });
  }

  // O(1) or O(R-L)
  X prod(int L, int R) {
    if (L == R) return MX::unit();
    R -= 1;
    int a = L >> LOG, b = R >> LOG;
    if (a < b) {
      X x = ST.prod(a + 1, b);
      x = MX::op(suf[L], x);
      x = MX::op(x, pre[R]);
      return x;
    }
    X x = A[L];
    FOR(i, L + 1, R + 1) x = MX::op(x, A[i]);
    return x;
  }
};

} // namespace maspy

#line 2 "/Users/noya2/Desktop/Noya2_library/misc/concepts.hpp"

#include<concepts>

namespace noya2 {

template<class monoid>
concept Monoid = requires {
    typename monoid::value_type;
    {monoid::op(declval<typename monoid::value_type>(),declval<typename monoid::value_type>())} -> std::same_as<typename monoid::value_type>;
    {monoid::e()} -> std::same_as<typename monoid::value_type>;
};

template<class group>
concept Group = requires {
    requires Monoid<group>;
    {group::inv(declval<typename group::value_type>())} -> std::same_as<typename group::value_type>;
};

} // namespace noya2
#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp"

#line 5 "/Users/noya2/Desktop/Noya2_library/data_structure/compress.hpp"

namespace noya2{

template<typename T>
struct compress {
    std::vector<T> raws;
    compress () {}
    compress (const vector<T> &_raws) : raws(_raws){ build(); }
    void build(){
        std::sort(raws.begin(), raws.end());
        raws.erase(std::unique(raws.begin(), raws.end()), raws.end());
    }
    int id(const T &raw){ return lb(raw); }
    T raw(const int &id){ return raws[id]; }
    void add(const T &raw){ raws.emplace_back(raw); }
    void reserve(size_t sz){ raws.reserve(sz); }
    size_t size(){ return raws.size(); }
    int lb(const T &raw){ return lower_bound(all(raws),raw) - raws.begin(); }
    int ub(const T &raw){ return upper_bound(all(raws),raw) - raws.begin(); }
    bool contains(const T &raw){
        int jd = lb(raw);
        if (jd < (int)size()) return raws[jd] == raw;
        return false;
    }
    int contains_id(const T &raw){
        int jd = lb(raw);
        if (jd < (int)size() && raws[jd] == raw) return jd;
        return -1;
    }
};

} // namespace noya2
#line 204 "c.cpp"

template<Group G>
struct static_online_rectangle_sum {
    using T = G::value_type;
    int n, sz;
    std::vector<std::vector<T>> cums;
    std::vector<compress<int>> ys;
    static_online_rectangle_sum(int _n, const std::vector<tuple<int,int,T>> &ps) : n(_n){
        sz = bit_ceil<uint32_t>(n);
        cums.resize(sz * 2);
        ys.resize(sz * 2);
        for (auto [x, y, v] : ps){
            int xid = x + sz;
            ys[xid].add(y);
            while (xid > 1){
                xid >>= 1;
                ys[xid].add(y);
            }
        }
        for (int i = 1; i < 2*sz; i++){
            ys[i].build();
            cums[i].resize(ys[i].size()+1, G::e());
        }
        for (auto [x, y, v] : ps){
            int xid = x + sz;
            assert(ys[xid].contains(y));
            int yid = ys[xid].id(y) + 1;
            cums[xid][yid] = G::op(cums[xid][yid], v);
            while (xid > 1){
                xid >>= 1;
                assert(ys[xid].contains(y));
                yid = ys[xid].id(y) + 1;
                cums[xid][yid] = G::op(cums[xid][yid], v);
            }
        }
        for (int i = 1; i < 2*sz; i++){
            for (int j = 0; j < (int)ys[i].size(); j++){
                cums[i][j+1] = G::op(cums[i][j], cums[i][j+1]);
            }
        }
    }
    T inner_prod(int xid, int lq, int rq){
        return G::op(G::inv(cums[xid][ys[xid].lb(lq)]),cums[xid][ys[xid].lb(rq)]);
    }
    T prod(int li, int ri, int lq, int rq){
        T ret = G::e();
        for (li += sz, ri += sz; li < ri; li >>= 1, ri >>= 1){
            if (li & 1) ret = G::op(ret, inner_prod(li, lq, rq)), li++;
            if (ri & 1) --ri, ret = G::op(ret, inner_prod(ri, lq, rq));
        }
        return ret;
    }
};

void solve(){
    int n; in(n);
    vector<int> a(n); in(a);
    vector<vector<int>> ids(mx);
    vector<int> psml;
    vector<int> pid(mx);
    for (int p : sieve.primes){
        if (p >= sq) break;
        pid[p] = psml.size();
        psml.emplace_back(p);
    }
    int sz = psml.size();
    vector<vector<mint>> pws(sz,vector<mint>(30,1));
    rep(i,sz){
        rep(j,30-1){
            pws[i][j+1] = pws[i][j] * psml[i];
        }
    }
    using Mono = Monoid_Max<int8_t>;
    using ST = maspy::Sparse_Table<Mono>;
    vector<vector<int8_t>> init(sz,vector<int8_t>(n));
    rep(i,n){
        for (auto [p, e] : prime_factorization_sieve(a[i])){
            if (p < sq){
                init[pid[p]][i] = e;
            }
            else {
                assert(e == 1);
                ids[p].emplace_back(i);
            }
        }
    }
    mint tot = 1;
    vector<maspy::Static_Range_Product<Mono,ST>> segs(sz);
    rep(i,sz){
        segs[i] = maspy::Static_Range_Product<Mono,ST>(init[i]);
    }
    using T = mulinv_group<mint>::value_type;
    vector<tuple<int,int,T>> upds;
    rep(p,mx){
        if (ids[p].empty()) continue;
        ids[p].emplace_back(n);
        tot *= p;
        int pre = -1;
        mint ip = mint(p).inv();
        for (int i : ids[p]){
            upds.push_back({pre+1,i+1,T{mint(p),ip}});
            pre = i;
        }
    }
    static_online_rectangle_sum<mulinv_group<mint>> rt(n+2,upds);
    int q; in(q);
    mint pans = 1;
    while (q--){
        mint A, B; in(A,B);
        mint x = A * pans;
        int y = x.val() % n + 1;
        mint z = B * pans;
        int w = z.val() % n + 1;
        int l = min(y,w), r = max(y,w); l--;
        // int l, r; in(l,r); l--;
        mint ans = tot * rt.prod(0,l+1,r+1,n+2).second;
        rep(i,sz){
            ans *= pws[i][segs[i].prod(l,r)];
        }
        out(ans);
        pans = ans;
    }
}

int main(){
    sieve.request(mx);
    int t = 1; //in(t);
    while (t--) { solve(); }
}
0