結果

問題 No.3020 ユークリッドの互除法・改
ユーザー iilj
提出日時 2025-02-14 21:41:35
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 409 ms / 2,000 ms
コード長 5,302 bytes
コンパイル時間 155 ms
コンパイル使用メモリ 12,928 KB
実行使用メモリ 32,696 KB
最終ジャッジ日時 2025-02-14 21:41:48
合計ジャッジ時間 12,406 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import numpy as np
from numpy.typing import NDArray
# https://qiita.com/yuji0001/items/64dc97cd4dcebf83d0a8
#
def Eij(i: int, j: int, n: int) -> NDArray[np.int64]:
E = np.eye(n, dtype=np.int64)
E[i, i] = 0
E[j, j] = 0
E[i, j] = 1
E[j, i] = 1
return E
def Ei(i: int, n: int) -> NDArray[np.int64]:
E = np.eye(n, dtype=np.int64)
E[i, i] = -1
return E
def Ec(i: int, j: int, c: int, n: int) -> NDArray[np.int64]:
E = np.eye(n, dtype=np.int64)
E[i, j] = c
return E
# A[k:,k:]0A[k,k]
def moveMN(
A: NDArray[np.int64], k: int
) -> tuple[NDArray[np.int64], NDArray[np.int64], NDArray[np.int64]]:
tmp_A = A[k:, k:]
a = np.abs(tmp_A[tmp_A != 0]).min()
i = np.where(np.abs(tmp_A) == a)[0][0] + k
j = np.where(np.abs(tmp_A) == a)[1][0] + k
P: NDArray[np.int64] = Eij(k, j, A.shape[1])
invQ: NDArray[np.int64] = Eij(i, k, A.shape[0])
B: NDArray[np.int64] = invQ.dot(A).dot(P)
if B[k, k] < 0:
Pi = Ei(k, A.shape[1])
B = B.dot(Pi)
P = P.dot(Pi)
return invQ, B, P
# A[k,k]使A[k+1:,k]0(A[k,k])
def rowR(
A: NDArray[np.int64], k: int
) -> tuple[NDArray[np.int64], NDArray[np.int64], NDArray[np.int64]]:
B: NDArray[np.int64] = A.copy()
invQ: NDArray[np.int64] = np.eye(A.shape[0], dtype=np.int64)
P: NDArray[np.int64] = np.eye(A.shape[1], dtype=np.int64)
for i in range(k + 1, A.shape[0]):
q: int = A[i, k] // A[k, k]
#
# r: int = A[i, k] % A[k, k]
invQi: NDArray[np.int64] = Ec(i, k, -q, A.shape[0])
B = invQi.dot(B)
invQ = invQi.dot(invQ)
return invQ, B, P
# A[k,k]使A[k,k+1]0(A[k,k])
def colR(
A: NDArray[np.int64], k: int
) -> tuple[NDArray[np.int64], NDArray[np.int64], NDArray[np.int64]]:
B: NDArray[np.int64] = A.copy()
invQ: NDArray[np.int64] = np.eye(A.shape[0], dtype=np.int64)
P: NDArray[np.int64] = np.eye(A.shape[1], dtype=np.int64)
for i in range(k + 1, A.shape[1]):
q = A[k, i] // A[k, k]
#
# r = A[k, i] % A[k, k]
Pi = Ec(k, i, -q, A.shape[1])
B = B.dot(Pi)
P = P.dot(Pi)
return invQ, B, P
# A[k+1:,k+1:]A[k,k]A[i,j]A[k,k]
def remR(
A: NDArray[np.int64], k: int
) -> tuple[NDArray[np.int64], NDArray[np.int64], NDArray[np.int64]]:
invQ: NDArray[np.int64] = np.eye(A.shape[0], dtype=np.int64)
P: NDArray[np.int64] = np.eye(A.shape[1], dtype=np.int64)
# Find i,j
i = np.where(A[k + 1 :, k + 1 :] % A[k, k] != 0)[0][0] + k + 1
j = np.where(A[k + 1 :, k + 1 :] % A[k, k] != 0)[1][0] + k + 1
q = A[i, j] // A[k, k]
# r = A[i, j] % A[k, k]
invQi: NDArray[np.int64] = Ec(i, k, q, A.shape[0])
Pi: NDArray[np.int64] = Ec(k, j, -1, A.shape[1])
B: NDArray[np.int64] = invQi.dot(A).dot(Pi)
P = P.dot(Pi)
invQ = invQi.dot(invQ)
return invQ, B, P
# Main Function
def Smith_Normalization(A: NDArray[np.int64]):
invQ: NDArray[np.int64] = np.eye(A.shape[0], dtype=np.int64)
P: NDArray[np.int64] = np.eye(A.shape[1], dtype=np.int64)
A0 = A.copy()
# limit of optimization
N = 1000
for k in range(min(A0.shape)):
# If A0[k:,k:] is zero matrix, then stop calculation
if np.sum(np.abs(A0[k:, k:])) == 0:
break
for i in range(N):
if i == N - 1:
print("Error: Time Out")
# minimize A[k,k]
invQi, A1, Pi = moveMN(A0, k)
invQ = invQi.dot(invQ)
P = P.dot(Pi)
# make zero row A[k+1:,k]
invQi, A2, Pi = rowR(A1, k)
invQ = invQi.dot(invQ)
P = P.dot(Pi)
# if row A2[k+1:,k] is zero vector ?
if np.abs(A2[k + 1 :, k]).sum() == 0:
# make zero col A[k,k+1:]
invQi, A3, Pi = colR(A2, k)
invQ = invQi.dot(invQ)
P = P.dot(Pi)
# if col A3[k+1:,k] is zero vector ?
if np.abs(A3[k, k + 1 :]).sum() == 0:
# A[k,k]|A[k+1:,k+1:]?
if np.sum(A3[k + 1 :, k + 1 :] % A3[k, k]) == 0:
A0 = A3.copy()
break
else:
# reduce A[k+1:,k+1:]
invQi, A0, Pi = remR(A3, k)
invQ = invQi.dot(invQ)
P = P.dot(Pi)
else:
A0 = A3.copy()
else:
A0 = A2.copy()
B = A0.copy().astype(int)
P = P.astype(int)
invQ = invQ.astype(int)
return invQ, B, P
def main() -> None:
A_raw = [list(map(int, input().split())) for _ in range(2)]
# A_raw = [[100000000, 0], [0, 99999999]]
# print(A_raw)
# return
# Check result
A = np.array(A_raw, dtype=np.int64)
_, B, _ = Smith_Normalization(A)
# print(B)
print(B[0, 0], B[1, 1])
if __name__ == "__main__":
main()
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0