結果
| 問題 |
No.3025 Chocol∀te
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-02-14 23:01:51 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 22,049 bytes |
| コンパイル時間 | 5,340 ms |
| コンパイル使用メモリ | 330,784 KB |
| 実行使用メモリ | 1,159,452 KB |
| 最終ジャッジ日時 | 2025-02-14 23:02:46 |
| 合計ジャッジ時間 | 53,821 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 2 WA * 16 RE * 49 TLE * 9 MLE * 1 |
ソースコード
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #define INTERACTIVE
#include <bits/stdc++.h>
using namespace std;
namespace templates {
// type
using ll = long long;
using ull = unsigned long long;
using Pii = pair<int, int>;
using Pil = pair<int, ll>;
using Pli = pair<ll, int>;
using Pll = pair<ll, ll>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
// clang-format off
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
// clang-format on
// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on
// const value
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
const double PI = acos(-1);
// other macro
#if !defined(RIN__LOCAL) && !defined(INTERACTIVE)
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)
// function
vector<char> stoc(string &S) {
int n = S.size();
vector<char> ret(n);
for (int i = 0; i < n; i++) ret[i] = S[i];
return ret;
}
string ctos(vector<char> &S) {
int n = S.size();
string ret = "";
for (int i = 0; i < n; i++) ret += S[i];
return ret;
}
template <class T>
auto min(const T &a) {
return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
auto b = clamp(a, l, r);
return (a != b ? a = b, 1 : 0);
}
template <typename T>
T sum(vector<T> &A) {
T tot = 0;
for (auto a : A) tot += a;
return tot;
}
template <typename T>
vector<T> compression(vector<T> X) {
sort(all(X));
X.erase(unique(all(X)), X.end());
return X;
}
// input and output
namespace io {
// __int128_t
std::istream &operator>>(std::istream &is, __int128_t &value) {
std::string str;
is >> str;
value = 0;
int sign = 1;
for (size_t i = 0; i < str.size(); i++) {
if (i == 0 && str[i] == '-') {
sign = -1;
continue;
}
value = value * 10 + str[i] - '0';
}
value *= sign;
return is;
}
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << ' ';
}
return os;
}
// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
for (auto &a : A) is >> a;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
is >> A.first >> A.second;
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
os << A.first << ' ' << A.second;
return os;
}
// vector<pair<S, T>>
template <typename S, typename T>
istream &operator>>(istream &is, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
is >> A[i];
}
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
for (size_t i = 0; i < A.size(); i++) {
os << A[i];
if (i != A.size() - 1) os << endl;
}
return os;
}
// tuple
template <typename T, size_t N>
struct TuplePrint {
static ostream &print(ostream &os, const T &t) {
TuplePrint<T, N - 1>::print(os, t);
os << ' ' << get<N - 1>(t);
return os;
}
};
template <typename T>
struct TuplePrint<T, 1> {
static ostream &print(ostream &os, const T &t) {
os << get<0>(t);
return os;
}
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
return os;
}
// io functions
void FLUSH() {
cout << flush;
}
void print() {
cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(std::forward<Tail>(tail)...);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
int n = A.size();
for (int i = 0; i < n; i++) {
cout << A[i];
if (i != n - 1) cout << sep;
}
cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
cout << A << end;
}
template <typename T>
void prispa(T A) {
priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
if (f)
print(A);
else
print(B);
return f;
}
template <class... T>
void inp(T &...a) {
(cin >> ... >> a);
}
} // namespace io
using namespace io;
// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<int>> edges(n, vector<int>());
for (int i = 0; i < m; i++) {
INT(u, v);
u -= indexed;
v -= indexed;
edges[u].push_back(v);
if (!direct) edges[v].push_back(u);
}
return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
return read_edges(n, n - 1, false, indexed);
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
for (int i = 0; i < m; i++) {
INT(u, v);
T w;
inp(w);
u -= indexed;
v -= indexed;
edges[u].push_back({v, w});
if (!direct) edges[v].push_back({u, w});
}
return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
return read_wedges<T>(n, n - 1, false, indexed);
}
// yes / no
namespace yesno {
// yes
inline bool yes(bool f = true) {
cout << (f ? "yes" : "no") << endl;
return f;
}
inline bool Yes(bool f = true) {
cout << (f ? "Yes" : "No") << endl;
return f;
}
inline bool YES(bool f = true) {
cout << (f ? "YES" : "NO") << endl;
return f;
}
// no
inline bool no(bool f = true) {
cout << (!f ? "yes" : "no") << endl;
return f;
}
inline bool No(bool f = true) {
cout << (!f ? "Yes" : "No") << endl;
return f;
}
inline bool NO(bool f = true) {
cout << (!f ? "YES" : "NO") << endl;
return f;
}
// possible
inline bool possible(bool f = true) {
cout << (f ? "possible" : "impossible") << endl;
return f;
}
inline bool Possible(bool f = true) {
cout << (f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool POSSIBLE(bool f = true) {
cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// impossible
inline bool impossible(bool f = true) {
cout << (!f ? "possible" : "impossible") << endl;
return f;
}
inline bool Impossible(bool f = true) {
cout << (!f ? "Possible" : "Impossible") << endl;
return f;
}
inline bool IMPOSSIBLE(bool f = true) {
cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
return f;
}
// Alice Bob
inline bool Alice(bool f = true) {
cout << (f ? "Alice" : "Bob") << endl;
return f;
}
inline bool Bob(bool f = true) {
cout << (f ? "Bob" : "Alice") << endl;
return f;
}
// Takahashi Aoki
inline bool Takahashi(bool f = true) {
cout << (f ? "Takahashi" : "Aoki") << endl;
return f;
}
inline bool Aoki(bool f = true) {
cout << (f ? "Aoki" : "Takahashi") << endl;
return f;
}
} // namespace yesno
using namespace yesno;
} // namespace templates
using namespace templates;
enum class DyConOpe {
ADD_EDGE = 0,
REMOVE_EDGE = 1,
EVENT = 2,
};
struct OfflineDynamicConnectivity {
std::vector<std::pair<DyConOpe, int>> opes;
int edge_cnt, event_cnt;
std::vector<std::pair<int, int>> e_range;
std::vector<bool> edge_exist;
OfflineDynamicConnectivity(int Q) : edge_cnt(0), event_cnt(0) {
opes.reserve(Q);
e_range.reserve(Q);
edge_exist.reserve(Q);
}
OfflineDynamicConnectivity() : OfflineDynamicConnectivity(0) {}
int add_edge() {
e_range.emplace_back(int(opes.size()), -1);
opes.emplace_back(DyConOpe::ADD_EDGE, edge_cnt++);
edge_exist.push_back(true);
return edge_cnt - 1;
}
void remove_edge(int ei) {
assert(ei < int(edge_exist.size()));
assert(edge_exist[ei]);
edge_exist[ei] = false;
e_range[ei].second = int(opes.size());
opes.emplace_back(DyConOpe::REMOVE_EDGE, ei);
}
int add_event() {
opes.emplace_back(DyConOpe::EVENT, event_cnt++);
return event_cnt - 1;
}
std::vector<std::pair<DyConOpe, int>> build() {
if (opes.empty()) return {};
int n0 = 1;
int n = opes.size();
while (n0 < n) n0 <<= 1;
std::vector<std::vector<int>> es(2 * n0);
for (int ei = 0; ei < edge_cnt; ei++) {
auto [l, r] = e_range[ei];
if (r == -1) r = n;
l += n0;
r += n0;
while (l < r) {
if (l & 1) {
es[l++].push_back(ei);
}
if (r & 1) {
es[--r].push_back(ei);
}
l >>= 1;
r >>= 1;
}
}
std::vector<bool> valid(2 * n0, false);
for (int i = n0; i < n0 + n; i++) valid[i] = true;
for (int i = n0 - 1; i >= 1; i--) {
valid[i] = valid[2 * i];
}
std::vector<std::pair<DyConOpe, int>> queries;
std::stack<int> st;
st.emplace(~1);
st.emplace(1);
while (!st.empty()) {
int v = st.top();
st.pop();
if (v >= 0) {
for (auto ei : es[v]) {
queries.emplace_back(DyConOpe::ADD_EDGE, ei);
}
if (v >= n0) {
if (opes[v - n0].first == DyConOpe::EVENT) {
queries.emplace_back(DyConOpe::EVENT, opes[v - n0].second);
}
} else {
if (valid[2 * v + 1]) {
st.emplace(~(2 * v + 1));
st.emplace(2 * v + 1);
}
if (valid[2 * v]) {
st.emplace(~(2 * v));
st.emplace(2 * v);
}
}
} else {
v = ~v;
for (auto ei : es[v]) {
queries.emplace_back(DyConOpe::REMOVE_EDGE, ei);
}
}
}
return queries;
}
};
template <typename T, typename V>
struct HashMap {
std::vector<T> key;
std::vector<V> value;
std::vector<bool> used;
uint32_t mask;
std::vector<T> keys;
HashMap(int n = 0) {
int s = 4;
while (s < n) s <<= 1;
key.resize(s);
value.resize(s);
used.resize(s);
keys.reserve(s);
mask = s - 1;
}
size_t size() {
return keys.size();
}
size_t hash(uint64_t x) {
static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
x += FIXED_RANDOM;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9ULL;
x = (x ^ (x >> 27)) * 0x94d049bb133111ebULL;
x = x ^ (x >> 31);
return x & mask;
}
int index(const int64_t &x) {
size_t i = hash(x);
while (used[i] && key[i] != x) {
i++;
if (i == key.size()) i = 0;
}
return i;
}
void extend() {
std::vector<V> values;
values.reserve(keys.size());
for (auto k : keys) {
values.push_back(get(k));
}
int n = key.size();
key.resize(2 * n);
value.resize(2 * n);
used.assign(2 * n, false);
keys.reserve(2 * n);
mask = 2 * n - 1;
for (size_t i = 0; i < keys.size(); i++) {
auto k = index(keys[i]);
used[k] = true;
key[k] = keys[i];
value[k] = values[i];
}
}
V &operator[](const T &x) {
if (keys.size() * 4 > key.size()) {
extend();
}
int i = index(x);
if (!used[i]) {
used[i] = true;
keys.push_back(x);
}
key[i] = x;
return value[i];
}
V get(const T &x, const V &default_value = V()) {
int i = index(x);
return used[i] ? value[i] : default_value;
}
bool find(const T &x) {
int i = index(x);
return used[i];
}
void clear() {
keys.clear();
used.assign(used.size(), false);
}
};
void solve() {
INT(n, m);
VEC(Pii, edges, n);
for (auto &[u, v] : edges) {
u--;
v--;
}
VEC(ll, A, n);
map<Pii, int> e2idx;
vec(Pii, events, 0);
INT(Q);
OfflineDynamicConnectivity G(m + Q);
for (auto [u, v] : edges) {
e2idx[{u, v}] = G.add_edge();
}
fori(Q) {
INT(t);
if (t == 1) {
INT(u, v);
u--;
v--;
if (e2idx.count({u, v})) {
G.remove_edge(e2idx[{u, v}]);
e2idx.erase({u, v});
} else {
e2idx[{u, v}] = G.add_edge();
edges.emplace_back(u, v);
}
} else if (t == 2) {
INT(p, a);
p--;
G.add_event();
events.push_back({p, a});
} else {
INT(c);
c--;
G.add_event();
events.push_back({-1, c});
}
}
vec(int, deg, n, 0);
for (auto [u, v] : edges) {
deg[u]++;
deg[v]++;
}
vec(int, idx, n);
iota(all(idx), 0);
sort(all(idx), [&](int i, int j) { return deg[i] > deg[j]; });
int B = sqrt(n);
chmin(B, n);
vec(int, large, 0);
vec(bool, is_large, n, false);
fori(j, B) {
int i = idx[j];
large.push_back(i);
is_large[i] = true;
}
vec(ll, ans, n, 0);
HashMap<ll, int> tf;
vvec(int, adj, n);
for (auto [u, v] : edges) {
adj[u].push_back(v);
adj[v].push_back(u);
}
fori(i, n) {
adj[i] = compression(adj[i]);
}
for (auto [t, ei] : G.opes) {
if (t == DyConOpe::ADD_EDGE) {
auto [u, v] = edges[ei];
e2idx[{u, v}] = ei;
if (!is_large[u]) {
ans[v] += A[u];
}
if (!is_large[v]) {
ans[u] += A[v];
}
tf[u * n + v] = true;
} else if (t == DyConOpe::REMOVE_EDGE) {
auto [u, v] = edges[ei];
e2idx.erase({u, v});
if (!is_large[u]) {
ans[v] -= A[u];
}
if (!is_large[v]) {
ans[u] -= A[v];
}
tf[u * n + v] = false;
} else if (t == DyConOpe::EVENT) {
auto [p, a] = events[ei];
if (p == -1) {
ll x = ans[a];
for (auto i : large) {
int key = i > a ? a * n + i : i * n + a;
if (tf.get(key, false)) {
x += A[i];
}
}
print(x);
} else {
if (!is_large[p]) {
ll d = a - A[p];
for (auto i : adj[p]) {
int key = i > p ? p * n + i : i * n + p;
if (tf.get(key, false)) {
ans[i] += d;
}
}
}
A[p] = a;
}
}
}
}
int main() {
#ifndef INTERACTIVE
std::cin.tie(0)->sync_with_stdio(0);
#endif
// std::cout << std::fixed << std::setprecision(12);
int t;
t = 1;
// std::cin >> t;
while (t--) solve();
return 0;
}
// // #pragma GCC target("avx2")
// // #pragma GCC optimize("O3")
// // #pragma GCC optimize("unroll-loops")
// // #define INTERACTIVE
//
// #include "kyopro-cpp/template.hpp"
//
// #include "graph/OfflineDynamicConnectivity.hpp"
// #include "misc/HashMap.hpp"
//
// void solve() {
// INT(n, m);
// VEC(Pii, edges, n);
// for (auto &[u, v] : edges) {
// u--;
// v--;
// }
// VEC(ll, A, n);
// map<Pii, int> e2idx;
// vec(Pii, events, 0);
// INT(Q);
// OfflineDynamicConnectivity G(m + Q);
// for (auto [u, v] : edges) {
// e2idx[{u, v}] = G.add_edge();
// }
// fori(Q) {
// INT(t);
// if (t == 1) {
// INT(u, v);
// u--;
// v--;
// if (e2idx.count({u, v})) {
// G.remove_edge(e2idx[{u, v}]);
// e2idx.erase({u, v});
// } else {
// e2idx[{u, v}] = G.add_edge();
// edges.emplace_back(u, v);
// }
// } else if (t == 2) {
// INT(p, a);
// p--;
// G.add_event();
// events.push_back({p, a});
// } else {
// INT(c);
// c--;
// G.add_event();
// events.push_back({-1, c});
// }
// }
//
// vec(int, deg, n, 0);
// for (auto [u, v] : edges) {
// deg[u]++;
// deg[v]++;
// }
// vec(int, idx, n);
// iota(all(idx), 0);
// sort(all(idx), [&](int i, int j) { return deg[i] > deg[j]; });
// int B = sqrt(n);
// chmin(B, n);
// vec(int, large, 0);
// vec(bool, is_large, n, false);
// fori(j, B) {
// int i = idx[j];
// large.push_back(i);
// is_large[i] = true;
// }
//
// vec(ll, ans, n, 0);
// HashMap<ll, int> tf;
// vvec(int, adj, n);
// for (auto [u, v] : edges) {
// adj[u].push_back(v);
// adj[v].push_back(u);
// }
// fori(i, n) {
// adj[i] = compression(adj[i]);
// }
//
// for (auto [t, ei] : G.opes) {
// if (t == DyConOpe::ADD_EDGE) {
// auto [u, v] = edges[ei];
// e2idx[{u, v}] = ei;
//
// if (!is_large[u]) {
// ans[v] += A[u];
// }
// if (!is_large[v]) {
// ans[u] += A[v];
// }
// tf[u * n + v] = true;
// } else if (t == DyConOpe::REMOVE_EDGE) {
// auto [u, v] = edges[ei];
// e2idx.erase({u, v});
// if (!is_large[u]) {
// ans[v] -= A[u];
// }
// if (!is_large[v]) {
// ans[u] -= A[v];
// }
// tf[u * n + v] = false;
// } else if (t == DyConOpe::EVENT) {
// auto [p, a] = events[ei];
// if (p == -1) {
// ll x = ans[a];
// for (auto i : large) {
// int key = i > a ? a * n + i : i * n + a;
// if (tf.get(key, false)) {
// x += A[i];
// }
// }
// print(x);
// } else {
// if (!is_large[p]) {
// ll d = a - A[p];
// for (auto i : adj[p]) {
// int key = i > p ? p * n + i : i * n + p;
// if (tf.get(key, false)) {
// ans[i] += d;
// }
// }
// }
// A[p] = a;
// }
// }
// }
// }
//
// int main() {
// #ifndef INTERACTIVE
// std::cin.tie(0)->sync_with_stdio(0);
// #endif
// // std::cout << std::fixed << std::setprecision(12);
// int t;
// t = 1;
// // std::cin >> t;
// while (t--) solve();
// return 0;
// }