結果
| 問題 |
No.3026 Range LCM (Online Version)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-02-14 23:03:29 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 10,104 bytes |
| コンパイル時間 | 2,118 ms |
| コンパイル使用メモリ | 140,064 KB |
| 実行使用メモリ | 203,444 KB |
| 最終ジャッジ日時 | 2025-02-14 23:04:55 |
| 合計ジャッジ時間 | 63,407 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 33 TLE * 3 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:233:12: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
233 | scanf("%d", &A[i]);
| ~~~~~^~~~~~~~~~~~~
main.cpp:235:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
235 | scanf("%d", &Q);
| ~~~~~^~~~~~~~~~
main.cpp:276:12: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
276 | scanf("%d%d", &L, &R);
| ~~~~~^~~~~~~~~~~~~~~~
ソースコード
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
// M = 2^K N + 1
// init: O(2^(K/2) + N), query: O(log(M))
// g must be a primitive root
template <unsigned M_> struct ModLog {
static constexpr unsigned M = M_;
static constexpr int K = __builtin_ctz(M - 1);
static constexpr int N = (M - 1) >> K;
static_assert(M == (N << K) + 1, "[ModLog] M = 2^K N + 1 must hold.");
const ModInt<M> g;
// N^-1 mod 2^K
unsigned invN;
// (g^N)^(-2^*)
ModInt<M> hs[K];
// ((g^N)^(2^floor(K/2)))^*, (g^(2^K))^*
pair<unsigned, int> ps[1 << (K-K/2)], qs[N];
ModLog() {}
explicit ModLog(ModInt<M> g_) : g(g_) {
invN = N;
for (int i = 0; i < 4; ++i) invN *= (2 - N * invN);
invN &= ((1 << K) - 1);
hs[0] = g.pow(-N);
for (int k = 1; k < K; ++k) hs[k] = hs[k - 1] * hs[k - 1];
const ModInt<M> p = g.pow(N << (K/2));
ModInt<M> pp = 1;
for (int x = 0; x < 1 << (K-K/2); ++x) { ps[x] = std::make_pair(pp.x, x); pp *= p; }
std::sort(ps, ps + (1 << (K-K/2)));
const ModInt<M> q = g.pow(1 << K);
ModInt<M> qq = 1;
for (int y = 0; y < N; ++y) { qs[y] = std::make_pair(qq.x, y); qq *= q; }
std::sort(qs, qs + N);
}
int operator()(ModInt<M> a) const {
assert(a);
// mod 2^K
ModInt<M> b = a.pow(N);
ModInt<M> bb = b;
for (int k = 0; k < K/2; ++k) bb *= bb;
int x = std::partition_point(ps, ps + (1 << (K-K/2)), [&](const pair<unsigned, int> &p) -> bool {
return (p.first < bb.x);
})->second;
for (int k = 0; k < K-K/2; ++k) if (x >> k & 1) b *= hs[k];
x |= (std::partition_point(ps, ps + (1 << (K-K/2)), [&](const pair<unsigned, int> &p) -> bool {
return (p.first < b.x);
})->second) << (K/2);
// mod N
ModInt<M> c = a;
for (int k = 0; k < K; ++k) c *= c;
const int y = std::partition_point(qs, qs + N, [&](const pair<unsigned, int> &q) -> bool {
return (q.first < c.x);
})->second;
return y + N * static_cast<int>((static_cast<long long>(invN) * (x - y)) & ((1 << K) - 1));
}
};
////////////////////////////////////////////////////////////////////////////////
template <class T> void bAdd(vector<T> &bit, int pos, const T &val) {
const int bitN = bit.size();
for (int x = pos; x < bitN; x |= x + 1) bit[x] += val;
}
template <class T> T bSum(const vector<T> &bit, int pos) {
T ret = 0;
for (int x = pos; x > 0; x &= x - 1) ret += bit[x - 1];
return ret;
}
template <class T> T bSum(const vector<T> &bit, int pos0, int pos1) {
return bSum(bit, pos1) - bSum(bit, pos0);
}
// point add, rectangle sum
template <class X, class Y, class T> struct Bit2d {
vector<X> xs;
vector<pair<Y, X>> yxs;
vector<vector<Y>> yss;
int m;
vector<int> ns;
vector<vector<T>> bit;
Bit2d() {}
void book(X x, Y y) {
xs.push_back(x);
yxs.emplace_back(y, x);
}
void build() {
sort(xs.begin(), xs.end());
xs.erase(unique(xs.begin(), xs.end()), xs.end());
m = xs.size();
yss.assign(m, {});
sort(yxs.begin(), yxs.end());
for (const auto &yx : yxs) {
const X x = yx.second;
const Y y = yx.first;
const int a = lower_bound(xs.begin(), xs.end(), x) - xs.begin();
assert(a < m); assert(xs[a] == x);
for (int u = a; u < m; u |= u + 1) yss[u].push_back(y);
}
ns.assign(m, 0);
bit.assign(m, {});
for (int u = 0; u < m; ++u) {
yss[u].erase(unique(yss[u].begin(), yss[u].end()), yss[u].end());
ns[u] = yss[u].size();
bit[u].assign(ns[u], 0);
}
}
void add(X x, Y y, T val) {
const int a = lower_bound(xs.begin(), xs.end(), x) - xs.begin();
assert(a < m); assert(xs[a] == x);
for (int u = a; u < m; u |= u + 1) {
const int b = lower_bound(yss[u].begin(), yss[u].end(), y) - yss[u].begin();
assert(b < ns[u]); assert(yss[u][b] == y);
for (int v = b; v < ns[u]; v |= v + 1) bit[u][v] += val;
}
}
T get(X x0, X x1, Y y0, Y y1) const {
const int a0 = lower_bound(xs.begin(), xs.end(), x0) - xs.begin();
const int a1 = lower_bound(xs.begin(), xs.end(), x1) - xs.begin();
T ret = 0;
for (int u = a0; u; u &= u - 1) ret -= get(u - 1, y0, y1);
for (int u = a1; u; u &= u - 1) ret += get(u - 1, y0, y1);
return ret;
}
private:
T get(int u, Y y0, Y y1) const {
T ret = 0;
const int b0 = lower_bound(yss[u].begin(), yss[u].end(), y0) - yss[u].begin();
const int b1 = lower_bound(yss[u].begin(), yss[u].end(), y1) - yss[u].begin();
for (int v = b0; v; v &= v - 1) ret -= bit[u][v - 1];
for (int v = b1; v; v &= v - 1) ret += bit[u][v - 1];
return ret;
}
};
constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;
using Mint1 = ModInt<MO - 1>;
const ModLog<MO> modLog(3);
constexpr int M = 200'010;
vector<int> lpf;
int N, Q;
vector<int> A;
Mint whole[450][200'010];
int main() {
lpf.assign(M + 1, 0);
for (int p = 2; p <= M; ++p) lpf[p] = p;
for (int p = 2; p <= M; ++p) if (lpf[p] == p) {
for (int n = p; n <= M; n += p) chmin(lpf[n], p);
}
for (; ~scanf("%d", &N); ) {
A.resize(N);
for (int i = 0; i < N; ++i) {
scanf("%d", &A[i]);
}
scanf("%d", &Q);
vector<pair<
pair<int, int>,
int
>> events;
vector<int> app(M + 1, N);
for (int i = N; --i >= 0; ) {
for (int a = A[i]; a > 1; ) {
const int p = lpf[a];
int e = 0;
do { ++e; a /= p; } while (a % p == 0);
int q = 1;
for (int f = 1; f <= e; ++f) {
q *= p;
// l=i+1 ~~> l=i; *= p for i<r<=app[q]
events.emplace_back(make_pair(i, app[q]), p);
app[q] = i;
}
}
}
vector<Mint1> bit1(N, 0);
Bit2d<int, int, Mint1> bit2;
for (const auto &e : events) {
const int l = e.first.first;
const int r = e.first.second;
bit2.book(l, r);
}
bit2.build();
for (const auto &e : events) {
const int l = e.first.first;
const int r = e.first.second;
const Mint1 val = modLog(e.second);
bAdd(bit1, l, +val);
bit2.add(l, r, -val);
}
Mint ans = 1;
for (int q = 0; q < Q; ++q) {
int L, R;
scanf("%d%d", &L, &R);
L = (int)(L * ans).x % N + 1;
R = (int)(R * ans).x % N + 1;
if (L > R) swap(L, R);
--L;
// cerr<<COLOR("93")<<L<<" "<<R<<COLOR()<<endl;
const Mint1 res = bSum(bit1, L, R) + bit2.get(L, N, L, R);
ans = modLog.g.pow(res.x);
printf("%u\n", ans.x);
}
}
return 0;
}