結果
問題 |
No.3026 Range LCM (Online Version)
|
ユーザー |
👑 |
提出日時 | 2025-02-14 23:03:29 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 10,104 bytes |
コンパイル時間 | 2,118 ms |
コンパイル使用メモリ | 140,064 KB |
実行使用メモリ | 203,444 KB |
最終ジャッジ日時 | 2025-02-14 23:04:55 |
合計ジャッジ時間 | 63,407 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 33 TLE * 3 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:233:12: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 233 | scanf("%d", &A[i]); | ~~~~~^~~~~~~~~~~~~ main.cpp:235:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 235 | scanf("%d", &Q); | ~~~~~^~~~~~~~~~ main.cpp:276:12: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 276 | scanf("%d%d", &L, &R); | ~~~~~^~~~~~~~~~~~~~~~
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// // M = 2^K N + 1 // init: O(2^(K/2) + N), query: O(log(M)) // g must be a primitive root template <unsigned M_> struct ModLog { static constexpr unsigned M = M_; static constexpr int K = __builtin_ctz(M - 1); static constexpr int N = (M - 1) >> K; static_assert(M == (N << K) + 1, "[ModLog] M = 2^K N + 1 must hold."); const ModInt<M> g; // N^-1 mod 2^K unsigned invN; // (g^N)^(-2^*) ModInt<M> hs[K]; // ((g^N)^(2^floor(K/2)))^*, (g^(2^K))^* pair<unsigned, int> ps[1 << (K-K/2)], qs[N]; ModLog() {} explicit ModLog(ModInt<M> g_) : g(g_) { invN = N; for (int i = 0; i < 4; ++i) invN *= (2 - N * invN); invN &= ((1 << K) - 1); hs[0] = g.pow(-N); for (int k = 1; k < K; ++k) hs[k] = hs[k - 1] * hs[k - 1]; const ModInt<M> p = g.pow(N << (K/2)); ModInt<M> pp = 1; for (int x = 0; x < 1 << (K-K/2); ++x) { ps[x] = std::make_pair(pp.x, x); pp *= p; } std::sort(ps, ps + (1 << (K-K/2))); const ModInt<M> q = g.pow(1 << K); ModInt<M> qq = 1; for (int y = 0; y < N; ++y) { qs[y] = std::make_pair(qq.x, y); qq *= q; } std::sort(qs, qs + N); } int operator()(ModInt<M> a) const { assert(a); // mod 2^K ModInt<M> b = a.pow(N); ModInt<M> bb = b; for (int k = 0; k < K/2; ++k) bb *= bb; int x = std::partition_point(ps, ps + (1 << (K-K/2)), [&](const pair<unsigned, int> &p) -> bool { return (p.first < bb.x); })->second; for (int k = 0; k < K-K/2; ++k) if (x >> k & 1) b *= hs[k]; x |= (std::partition_point(ps, ps + (1 << (K-K/2)), [&](const pair<unsigned, int> &p) -> bool { return (p.first < b.x); })->second) << (K/2); // mod N ModInt<M> c = a; for (int k = 0; k < K; ++k) c *= c; const int y = std::partition_point(qs, qs + N, [&](const pair<unsigned, int> &q) -> bool { return (q.first < c.x); })->second; return y + N * static_cast<int>((static_cast<long long>(invN) * (x - y)) & ((1 << K) - 1)); } }; //////////////////////////////////////////////////////////////////////////////// template <class T> void bAdd(vector<T> &bit, int pos, const T &val) { const int bitN = bit.size(); for (int x = pos; x < bitN; x |= x + 1) bit[x] += val; } template <class T> T bSum(const vector<T> &bit, int pos) { T ret = 0; for (int x = pos; x > 0; x &= x - 1) ret += bit[x - 1]; return ret; } template <class T> T bSum(const vector<T> &bit, int pos0, int pos1) { return bSum(bit, pos1) - bSum(bit, pos0); } // point add, rectangle sum template <class X, class Y, class T> struct Bit2d { vector<X> xs; vector<pair<Y, X>> yxs; vector<vector<Y>> yss; int m; vector<int> ns; vector<vector<T>> bit; Bit2d() {} void book(X x, Y y) { xs.push_back(x); yxs.emplace_back(y, x); } void build() { sort(xs.begin(), xs.end()); xs.erase(unique(xs.begin(), xs.end()), xs.end()); m = xs.size(); yss.assign(m, {}); sort(yxs.begin(), yxs.end()); for (const auto &yx : yxs) { const X x = yx.second; const Y y = yx.first; const int a = lower_bound(xs.begin(), xs.end(), x) - xs.begin(); assert(a < m); assert(xs[a] == x); for (int u = a; u < m; u |= u + 1) yss[u].push_back(y); } ns.assign(m, 0); bit.assign(m, {}); for (int u = 0; u < m; ++u) { yss[u].erase(unique(yss[u].begin(), yss[u].end()), yss[u].end()); ns[u] = yss[u].size(); bit[u].assign(ns[u], 0); } } void add(X x, Y y, T val) { const int a = lower_bound(xs.begin(), xs.end(), x) - xs.begin(); assert(a < m); assert(xs[a] == x); for (int u = a; u < m; u |= u + 1) { const int b = lower_bound(yss[u].begin(), yss[u].end(), y) - yss[u].begin(); assert(b < ns[u]); assert(yss[u][b] == y); for (int v = b; v < ns[u]; v |= v + 1) bit[u][v] += val; } } T get(X x0, X x1, Y y0, Y y1) const { const int a0 = lower_bound(xs.begin(), xs.end(), x0) - xs.begin(); const int a1 = lower_bound(xs.begin(), xs.end(), x1) - xs.begin(); T ret = 0; for (int u = a0; u; u &= u - 1) ret -= get(u - 1, y0, y1); for (int u = a1; u; u &= u - 1) ret += get(u - 1, y0, y1); return ret; } private: T get(int u, Y y0, Y y1) const { T ret = 0; const int b0 = lower_bound(yss[u].begin(), yss[u].end(), y0) - yss[u].begin(); const int b1 = lower_bound(yss[u].begin(), yss[u].end(), y1) - yss[u].begin(); for (int v = b0; v; v &= v - 1) ret -= bit[u][v - 1]; for (int v = b1; v; v &= v - 1) ret += bit[u][v - 1]; return ret; } }; constexpr unsigned MO = 998244353; using Mint = ModInt<MO>; using Mint1 = ModInt<MO - 1>; const ModLog<MO> modLog(3); constexpr int M = 200'010; vector<int> lpf; int N, Q; vector<int> A; Mint whole[450][200'010]; int main() { lpf.assign(M + 1, 0); for (int p = 2; p <= M; ++p) lpf[p] = p; for (int p = 2; p <= M; ++p) if (lpf[p] == p) { for (int n = p; n <= M; n += p) chmin(lpf[n], p); } for (; ~scanf("%d", &N); ) { A.resize(N); for (int i = 0; i < N; ++i) { scanf("%d", &A[i]); } scanf("%d", &Q); vector<pair< pair<int, int>, int >> events; vector<int> app(M + 1, N); for (int i = N; --i >= 0; ) { for (int a = A[i]; a > 1; ) { const int p = lpf[a]; int e = 0; do { ++e; a /= p; } while (a % p == 0); int q = 1; for (int f = 1; f <= e; ++f) { q *= p; // l=i+1 ~~> l=i; *= p for i<r<=app[q] events.emplace_back(make_pair(i, app[q]), p); app[q] = i; } } } vector<Mint1> bit1(N, 0); Bit2d<int, int, Mint1> bit2; for (const auto &e : events) { const int l = e.first.first; const int r = e.first.second; bit2.book(l, r); } bit2.build(); for (const auto &e : events) { const int l = e.first.first; const int r = e.first.second; const Mint1 val = modLog(e.second); bAdd(bit1, l, +val); bit2.add(l, r, -val); } Mint ans = 1; for (int q = 0; q < Q; ++q) { int L, R; scanf("%d%d", &L, &R); L = (int)(L * ans).x % N + 1; R = (int)(R * ans).x % N + 1; if (L > R) swap(L, R); --L; // cerr<<COLOR("93")<<L<<" "<<R<<COLOR()<<endl; const Mint1 res = bSum(bit1, L, R) + bit2.get(L, N, L, R); ans = modLog.g.pow(res.x); printf("%u\n", ans.x); } } return 0; }