結果

問題 No.3026 Range LCM (Online Version)
ユーザー t98slider
提出日時 2025-02-14 23:24:31
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 6,841 bytes
コンパイル時間 2,327 ms
コンパイル使用メモリ 207,880 KB
実行使用メモリ 296,692 KB
最終ジャッジ日時 2025-02-14 23:32:13
合計ジャッジ時間 113,123 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 10 TLE * 26
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define BL 512

template<const unsigned int MOD> struct prime_modint {
    using mint = prime_modint;
    unsigned int v;
    prime_modint() : v(0) {}
    prime_modint(unsigned int a) { a %= MOD; v = a; }
    prime_modint(unsigned long long a) { a %= MOD; v = a; }
    prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
    prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
    static constexpr int mod() { return MOD; }
    mint& operator++() {v++; if(v == MOD)v = 0; return *this;}
    mint& operator--() {if(v == 0)v = MOD; v--; return *this;}
    mint operator++(int) { mint result = *this; ++*this; return result; }
    mint operator--(int) { mint result = *this; --*this; return result; }
    mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; }
    mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; }
    mint& operator*=(const mint& rhs) {
        v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint r = 1, x = *this;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const { assert(v); return pow(MOD - 2); }
    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); }
    friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; }
};
//using mint = prime_modint<1000000007>;
using mint = prime_modint<998244353>;

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
    public:
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }
    const S operator[](int p) const { return get(p); }
    S operator[](int p) { return get(p); }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

    private:
    int _n, size, log;
    std::vector<S> d;
    int ceil_pow2(int n) {
        int x = 0;
        while ((1U << x) < (unsigned int)(n)) x++;
        return x;
    }
    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

mint op(mint lhs, mint rhs){
    return lhs * rhs;
}
mint e(){
    return 1;
}

int op2(int lhs, int rhs){
    return max(lhs, rhs);
}
int e2(){
    return 1;
}

int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}


int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
    vector<mint> tmp(n, 1);
    constexpr int r = 200000;
    vector<int> id(r + 1), tb(r + 1);
    tb[0] = tb[1] = -1;
    vector<int> p;
    for(int i = 2; i <= r; i++){
        if(tb[i] != 0) continue;
        if(i < BL){
            id[i] = p.size();
            p.emplace_back(i);
        }
        for(int j = i; j <= r; j += i){
            if(tb[j] == 0) tb[j] = i;
        }
    }

    const int m = p.size();
    vector<vector<int>> seg2(m, vector<int>(n, 1));

    for(int i = 0; i < n; i++){
        int v;
        cin >> v;
        while(v != 1){
            if(tb[v] <= BL) seg2[id[tb[v]]][i] *= tb[v];
            else tmp[i] *= tb[v];
            v /= tb[v];
        }
    }

    segtree<mint, op, e> seg(tmp);
    vector<segtree<int, op2, e2>> seg3(m);
    for(int i = 0; i < m; i++){
        seg3[i] = segtree<int, op2, e2>(seg2[i]);
    }

    int Q;
    cin >> Q;
    mint ans = 1;
    while(Q--){
        mint a, b;
        cin >> a.v >> b.v;
        a *= ans;
        b *= ans;
        a.v %= n;
        b.v %= n;
        int l = min(a.v, b.v), r = max(a.v, b.v) + 1;
        ans = seg.prod(l, r);
        for(int j = 0; j < m; j++){
            ans *= seg3[j].prod(l, r);
        }
        cout << ans << '\n';
    }
}
0