結果
問題 | No.2747 Permutation Adjacent Sum |
ユーザー |
|
提出日時 | 2025-02-17 13:00:52 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 449 ms / 3,000 ms |
コード長 | 18,381 bytes |
コンパイル時間 | 14,282 ms |
コンパイル使用メモリ | 377,788 KB |
実行使用メモリ | 9,916 KB |
最終ジャッジ日時 | 2025-02-17 13:01:37 |
合計ジャッジ時間 | 23,086 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 40 |
コンパイルメッセージ
warning: function `fps_inv` is never used --> src/main.rs:289:4 | 289 | fn fps_inv<P: mod_int::Mod + PartialEq>( | ^^^^^^^ | = note: `#[warn(dead_code)]` on by default warning: type alias `M` is never used --> src/main.rs:327:6 | 327 | type M = MInt; | ^ warning: function `middle_product` is never used --> src/main.rs:331:4 | 331 | fn middle_product(c: &[M], a: &[M]) -> Vec<M> { | ^^^^^^^^^^^^^^ warning: function `multipoint_evaluation` is never used --> src/main.rs:360:4 | 360 | fn multipoint_evaluation(ops: &FPSOps, c: &[MInt], p: &[MInt]) -> Vec<M> { | ^^^^^^^^^^^^^^^^^^^^^ warning: function `fps_mul_all` is never used --> src/main.rs:391:4 | 391 | fn fps_mul_all(ops: &FPSOps, f: &[Vec<MInt>]) -> Vec<MInt> { | ^^^^^^^^^^^ warning: function `fps_common_denom` is never used --> src/main.rs:406:4 | 406 | fn fps_common_denom(ops: &FPSOps, frac: &[(Vec<MInt>, Vec<MInt>)]) -> (Vec<MInt>, Vec<MInt>) { | ^^^^^^^^^^^^^^^^ warning: function `lagrange_interpolate` is never used --> src/main.rs:429:4 | 429 | fn lagrange_interpolate(ops: &FPSOps, xy: &[(MInt, MInt)]) -> Vec<MInt> { | ^^^^^^^^^^^^^^^^^^^^
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// FFT (in-place, verified as NTT only)// R: Ring + Copy// Verified by: https://judge.yosupo.jp/submission/53831// Adopts the technique used in https://judge.yosupo.jp/submission/3153.mod fft {use std::ops::*;// n should be a power of 2. zeta is a primitive n-th root of unity.// one is unity// Note that the result is bit-reversed.pub fn fft<R>(f: &mut [R], zeta: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let mut m = n;let mut base = zeta;unsafe {while m > 2 {m >>= 1;let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m);*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = w * (u - d);w = w * base;}r += 2 * m;}base = base * base;}if m > 1 {// m = 1let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}}}}pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let zeta = zeta_inv; // inverse FFTlet mut zetapow = Vec::with_capacity(20);{let mut m = 1;let mut cur = zeta;while m < n {zetapow.push(cur);cur = cur * cur;m *= 2;}}let mut m = 1;unsafe {if m < n {zetapow.pop();let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}m = 2;}while m < n {let base = zetapow.pop().unwrap();let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m) * w;*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = u - d;w = w * base;}r += 2 * m;}m *= 2;}}}}// Depends on: fft.rs, MInt.rs// Verified by: ABC269-Ex (https://atcoder.jp/contests/abc269/submissions/39116328)pub struct FPSOps<M: mod_int::Mod = P> {gen: mod_int::ModInt<M>,}impl<M: mod_int::Mod> FPSOps<M> {pub fn new(gen: mod_int::ModInt<M>) -> Self {FPSOps { gen: gen }}}impl<M: mod_int::Mod> FPSOps<M> {pub fn add(&self, mut a: Vec<mod_int::ModInt<M>>, mut b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {if a.len() < b.len() {std::mem::swap(&mut a, &mut b);}for i in 0..b.len() {a[i] += b[i];}a}pub fn mul(&self, a: Vec<mod_int::ModInt<M>>, b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {type MInt<M> = mod_int::ModInt<M>;let n = a.len() - 1;let m = b.len() - 1;let mut p = 1;while p <= n + m { p *= 2; }let mut f = vec![MInt::new(0); p];let mut g = vec![MInt::new(0); p];for i in 0..n + 1 { f[i] = a[i]; }for i in 0..m + 1 { g[i] = b[i]; }let fac = MInt::new(p as i64).inv();let zeta = self.gen.pow((M::m() - 1) / p as i64);fft::fft(&mut f, zeta, 1.into());fft::fft(&mut g, zeta, 1.into());for i in 0..p { f[i] *= g[i] * fac; }fft::inv_fft(&mut f, zeta.inv(), 1.into());f.truncate(n + m + 1);f}}// Computes f^{-1} mod x^{f.len()}.// Reference: https://codeforces.com/blog/entry/56422// Complexity: O(n log n)// Verified by: https://judge.yosupo.jp/submission/3219// Depends on: MInt.rs, fft.rsfn fps_inv<P: mod_int::Mod + PartialEq>(f: &[mod_int::ModInt<P>],gen: mod_int::ModInt<P>) -> Vec<mod_int::ModInt<P>> {let n = f.len();assert!(n.is_power_of_two());assert_eq!(f[0], 1.into());let mut sz = 1;let mut r = vec![mod_int::ModInt::new(0); n];let mut tmp_f = vec![mod_int::ModInt::new(0); n];let mut tmp_r = vec![mod_int::ModInt::new(0); n];r[0] = 1.into();// Adopts the technique used in https://judge.yosupo.jp/submission/3153while sz < n {let zeta = gen.pow((P::m() - 1) / sz as i64 / 2);tmp_f[..2 * sz].copy_from_slice(&f[..2 * sz]);tmp_r[..2 * sz].copy_from_slice(&r[..2 * sz]);fft::fft(&mut tmp_r[..2 * sz], zeta, 1.into());fft::fft(&mut tmp_f[..2 * sz], zeta, 1.into());let fac = mod_int::ModInt::new(2 * sz as i64).inv().pow(2);for i in 0..2 * sz {tmp_f[i] *= tmp_r[i];}fft::inv_fft(&mut tmp_f[..2 * sz], zeta.inv(), 1.into());for v in &mut tmp_f[..sz] {*v = 0.into();}fft::fft(&mut tmp_f[..2 * sz], zeta, 1.into());for i in 0..2 * sz {tmp_f[i] = -tmp_f[i] * tmp_r[i] * fac;}fft::inv_fft(&mut tmp_f[..2 * sz], zeta.inv(), 1.into());r[sz..2 * sz].copy_from_slice(&tmp_f[sz..2 * sz]);sz *= 2;}r}type M = MInt;// Copied and modified from https://judge.yosupo.jp/submission/133199.// Originally by sansen.fn middle_product(c: &[M], a: &[M]) -> Vec<M> {assert!(c.len() >= a.len());if a.len() <= (1 << 5) {return c.windows(a.len()).map(|c| {c.iter().zip(a.iter()).fold(MInt::new(0), |s, a| s + *a.0 * *a.1)}).collect();}let size = c.len().next_power_of_two();let mut x = Vec::from(c);x.resize(size, MInt::new(0));let mut y = Vec::from(a);y.reverse();y.resize(size, MInt::new(0));let zeta = MInt::new(3).pow((MOD - 1) / size as i64);fft::fft(&mut x, zeta, 1.into());fft::fft(&mut y, zeta, 1.into());let factor = MInt::new(size as i64).inv();for i in 0..size {x[i] *= y[i] * factor;}fft::inv_fft(&mut x, zeta.inv(), 1.into());(a.len()..=c.len()).map(|z| x[z - 1]).collect()}fn multipoint_evaluation(ops: &FPSOps, c: &[MInt], p: &[MInt]) -> Vec<M> {if p.is_empty() {return vec![];}let n = c.len();let m = p.len();let mut prod = vec![vec![]; 2 * m];for (prod, p) in prod[m..].iter_mut().zip(p.iter()) {*prod = vec![MInt::new(1), -*p];}for i in (1..m).rev() {prod[i] = ops.mul(prod[2 * i].clone(), prod[2 * i + 1].clone());}let mut prod1 = prod[1].clone();let mut sz = 1;while sz < n { sz *= 2; }prod1.resize(sz, 0.into());let mut inv = fps_inv(&prod1, 3.into());inv.truncate(n);let mut c = c.to_vec();c.resize(n + m - 1, MInt::new(0));let mut dp = vec![vec![]; 2 * m];dp[1] = middle_product(&c, &inv);for i in 1..m {dp[2 * i] = middle_product(&dp[i], &prod[2 * i + 1]);dp[2 * i + 1] = middle_product(&dp[i], &prod[2 * i]);}dp[m..].iter().map(|dp| dp[0]).collect()}// End of copy-pasted part.fn fps_mul_all(ops: &FPSOps, f: &[Vec<MInt>]) -> Vec<MInt> {let m = f.len();let mut seg = vec![vec![]; 2 * m];for i in 0..m {seg[i + m] = f[i].to_vec();}for i in (1..m).rev() {seg[i] = ops.mul(std::mem::replace(&mut seg[2 * i], vec![]),std::mem::replace(&mut seg[2 * i + 1], vec![]),);}std::mem::replace(&mut seg[1], vec![])}fn fps_common_denom(ops: &FPSOps, frac: &[(Vec<MInt>, Vec<MInt>)]) -> (Vec<MInt>, Vec<MInt>) {let m = frac.len();let mut seg = vec![(vec![], vec![]); 2 * m];for i in 0..m {seg[i + m] = frac[i].clone();}for i in (1..m).rev() {let den = ops.mul(seg[2 * i].1.clone(), seg[2 * i + 1].1.clone());let mut num = ops.mul(std::mem::replace(&mut seg[2 * i].1, vec![]),std::mem::replace(&mut seg[2 * i + 1].0, vec![]),);let tmp = ops.mul(std::mem::replace(&mut seg[2 * i].0, vec![]),std::mem::replace(&mut seg[2 * i + 1].1, vec![]),);num = ops.add(num, tmp);seg[i] = (num, den);}std::mem::replace(&mut seg[1], (vec![], vec![]))}// https://37zigen.com/lagrange-interpolation/fn lagrange_interpolate(ops: &FPSOps, xy: &[(MInt, MInt)]) -> Vec<MInt> {let n = xy.len();let mut xs = vec![MInt::new(0); n];let mut ps = vec![vec![]; n];for i in 0..n {xs[i] = xy[i].0;ps[i] = vec![-xy[i].0, 1.into()];}let g = fps_mul_all(ops, &ps);let mut gdash = vec![MInt::new(0); n];for i in 0..n {gdash[i] = g[i + 1] * (i + 1) as i64;}let vals = multipoint_evaluation(ops, &gdash, &xs);let mut fracs = vec![(vec![MInt::new(1)], vec![]); n];for i in 0..n {fracs[i].0[0] = vals[i].inv() * xy[i].1;fracs[i].1 = vec![-xy[i].0, 1.into()];}let (num, _) = fps_common_denom(ops, &fracs);num}// https://ferin-tech.hatenablog.com/entry/2019/08/11/%E3%83%A9%E3%82%B0%E3%83%A9%E3%83%B3%E3%82%B8%E3%83%A5%E8%A3%9C%E9%96%93// Finds f(t) given y[i] = f(x0 + d * i) for 0 <= i < y.len().// O(y.len() * log MOD)-timefn lagrange_interpolate_one_arithprog(y: &[MInt], x0: MInt, d: MInt, t: MInt) -> MInt {assert_ne!(d, 0.into());let n = y.len();let mut sum = MInt::new(0);// (x-x0-d*i)/((x-x0)...(x-x0-d*(n-1)))|_{x=x0+d*i}let mut cur = MInt::new(1);// (t-x0)...(t-x0-d*(n-1))let mut tprod = MInt::new(1);for i in 1..n {cur *= -d * i as i64;}cur = cur.inv();for i in 0..n {if t == x0 + d * i as i64 {return y[i];}tprod *= t - x0 - d * i as i64;}for i in 0..n {sum += y[i] * cur * tprod * (t - x0 - d * i as i64).inv();if i + 1 < n {cur *= (n - i - 1) as i64;cur *= -MInt::new((i + 1) as i64).inv();}}sum}// Generated by 2747-helper.rsconst STEP: usize = 10000000;const LEN: usize = 100;const FACT_TABLE: [i64; 100] = [1,295201906,160030060,957629942,545208507,213689172,760025067,939830261,506268060,39806322,808258749,440133909,686156489,741797144,390377694,12629586,544711799,104121967,495867250,421290700,117153405,57084755,202713771,675932866,79781699,956276337,652678397,35212756,655645460,468129309,761699708,533047427,287671032,206068022,50865043,144980423,111276893,259415897,444094191,593907889,573994984,892454686,566073550,128761001,888483202,251718753,548033568,428105027,742756734,546182474,62402409,102052166,826426395,159186619,926316039,176055335,51568171,414163604,604947226,681666415,511621808,924112080,265769800,955559118,763148293,472709375,19536133,860830935,290471030,851685235,242726978,169855231,612759169,599797734,961628039,953297493,62806842,37844313,909741023,689361523,887890124,380694152,669317759,367270918,806951470,843736533,377403437,945260111,786127243,80918046,875880304,364983542,623250998,598764068,804930040,24257676,214821357,791011898,954947696,183092975,];// https://yukicoder.me/problems/no/2747 (3.5)// solved with hints// \sum_{1 <= i <= N} (N-i)i^K が計算できれば良い。これはベルヌーイ数の先頭 K 項が O(K log K)-time 程度で計算できれば計算できる。// -> 解説を見た。ラグランジュ補間の方が簡単。最終的な多項式は K+2 次なので、0 <= i <= K+2 の K+3 点で補間する。// 最後に (N-2)! * (N-1) * 2 を掛けること。// - (N-2)!: 残りの点の埋め方// - (N-1): どの隙間を見るか// - 2: 左の方が大きいか// Tags: lagrange-polynomial-interpolation, lagrange-interpolationfn main() {let n: i64 = get();let k: i64 = get();let mut y = vec![];let mut sum = MInt::new(0);for i in 0..k + 3 {sum += MInt::new(i).pow(k) * (n - i);y.push(sum);}let mut ans = lagrange_interpolate_one_arithprog(&y, 0.into(), 1.into(), n.into());ans *= 2;let tbl_idx = ((n - 1) as usize / STEP).min(LEN - 1);let mut fac = MInt::new(FACT_TABLE[tbl_idx]);for i in tbl_idx * STEP + 1..=(n - 1) as usize {fac *= i as i64;}ans *= fac;println!("{ans}");}